Alzheimer's Disease (AD) Animal Model Deveopment Service
The development of an animal model of Alzheimer's disease (AD) that best approximates the human disease has been the goal of many researchers. Creative Biolabs specializes in neuroscience research and has extensive project experience. We are also flexible enough to meet the unique needs of our neurological research clients.
Neuropathology of AD
AD is the most common cause of the progressive decline of cognitive function in aged humans and is characterized by the presence of numerous senile plaques and neurofibrillary tangles accompanied by neuronal loss. Information on mechanisms of AD pathogenesis and preclinical evaluation of treatments directed at Aβ or phospho-tau has come from pathology, genetics, and various transgenic rodent models of AD.
Fig.1 Stages in the neuropathology of AD. (Schraen, 2008)
Animal models for AD
To better understand the role of β-amyloid plaques and neurofibrillary tangles (NFTs) in AD and related disorders, experimental animal models have been developed, which reproduce aspects of the neuropathological characteristics of these diseases. These animal models not only provide a general proof of principle but also reproduce more specific aspects of human disease. Animal models have been widely used to identify disease modifiers, pathogenic agents, susceptibility genes, as well as drug screenings. Finally, insight gained from these models can be translated to human disease and assist in the development of potential therapies.
- Natural Models
Some animals, including polar bears, sheep, dogs, goats, cats, and some non-human primates, spontaneously exhibit some of the neuropathological features associated with AD. In recent years, dogs have been considered a useful animal model for AD due to the proximity of canine and human brain aging. Among the non-human primate models, mouse lemurs seem to be a potential animal model that exhibits amyloid plaque, NFTs, and some other AD-related neuropathology.
- Genetic Models
Transgenic technology offers a unique opportunity to reproduce the etiology of familial AD by transfecting mutated human amyloid precursor protein (APP).
1) APP Transgenic mouse models
APP mono-transgenic mouse models showed that Aβ plays a role in progressive plaque formation, synaptic loss, and glial proliferation. Biogenic models confirmed a disease-enhancing role for the β-secretase BACE and the γ-secretase component PS1, various inflammatory molecules, and the ε4 allele of apolipoprotein E.
2) Tau transgenic mouse models
Overexpression of human tau can lead to central and peripheral axonopathy, resulting in nerve cell dysfunction and amyotrophy. Behavioral analysis of tau transgenic mice showed that tau aggregation was sufficient to cause behavioral defects in the absence of NFT formation.
Fig.2 Reproducing plaques and NFTs in transgenic mice. (Woodruff-Pak, 2008)
- Interventional Models
The introduction of pharmacological or chemical agents into the brain, or induction of lesions in specific brain regions, can replicate some of the characteristics of AD. As a disease model, interventional models are generally better at identifying symptomatic or corrective treatments than disease-modifying therapies that stop or slow disease progression.
The study of these animal models is of great significance for clarifying the characteristics and Spatio-temporal evolution of brain cell abnormalities in AD patients, describing the mechanisms leading to brain dysfunction, and identifying new therapeutic targets and approaches. At Creative Biolabs, we have the expertise to optimize each stage to ensure you get the desired outcome, achieving the highest levels of efficiency throughout. Our team of highly qualified and experienced technical staff will work with you to develop and deliver AD animal model solutions. Please feel free to contact us for more detail.
References
- Schraen, M.S.; et al. Tau as a biomarker of neurodegenerative diseases. 2008.
- Woodruff-Pak, D.S. Animal models of Alzheimer's disease: therapeutic implications. Journal of Alzheimer's disease. 2008, 15(4): 507-521.
- iNeuMab™ Anti-pTau Antibody (NRP-0422-P1719) (Cat#: NRP-0422-P1719)
- iNeuMab™ Anti-CD20 Antibody (NRP-0422-P1230) (Cat#: NRP-0422-P1230)
- iNeuMab™ Anti-TREM2 Antibody (NRP-0422-P792) (Cat#: NRP-0422-P792)
- iNeuMab™ Anti-CD32b Antibody (NRP-0422-P1803) (Cat#: NRP-0422-P1803)
- iNeuMab™ Anti-SEZ6 Antibody (NRP-0422-P515) (Cat#: NRP-0422-P515)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P2275) (Cat#: NRP-0422-P2275)
- iNeuMab™ Anti-Integrin αvβ8 BBB Shuttle Antibody (NRZP-1222-ZP1218) (Cat#: NRZP-1222-ZP1218)
- iNeuMab™ Anti-ApoC3 BBB Shuttle Antibody (NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- iNeuMab™ Anti-EPHB2 Antibody (NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- iNeuMab™ Anti-F-Spondin/SPON1 Antibody, Clone 3F4 (Cat#: NRZP-0822-ZP4740)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Human Microglia Cell Line HMC3, Immortalized (Cat#: NCL-2108P38)
- Mouse Microglia Cell Line BV-2, Immortalized (Cat#: NCL2110P153)
- Immortalized Human Cerebral Microvascular Endothelial Cells (Cat#: NCL-2108-P020)
- Human Brain Astroblastoma U-87 MG (Cat#: NCL2110P117)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- iNeu™ Human Sensory Neurons (Cat#: NCL-2103-P62)
- iNeu™ Human Neural Stem Cell Line (Cat#: NCL200552ZP)
- Rat Muller Cell (Cat#: NCL2110P040)
- Mouse Retinal Ganglion Cells (Cat#: NCL2110P145)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)