Clearing Kits
When studying the brain in an anatomical setting, immunohistochemical approaches often involve imaging one tiny slice at a time. Using traditional methods to obtain micron-thick sections, fix, stain, image, and finally stitch all the sections together is a time-consuming process, especially for large pieces of tissue. Tissue clearing methods allow researchers to "see" the intact mouse brain, identify specific cells, and eliminate all the slicing and stitching to see deep into the tissue.
Applications
Which scientific questions may these methods of tissue cleaning help answer? These methods enable the resolution of issues like:
- Identifying the destiny of cells within a certain area.
- Identifying the localization of particular cell populations to unveil anatomical circuits.
- Examining intricate synaptic architecture in an intact brain while avoiding the introduction of artifacts.
- These inquiries apply to comprehending neurodegenerative diseases like AD as well as developmental and basic neuroscience.
Case Study
AD development is driven by the dynamic creation, progression, and interaction of pathological hallmarks such as amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs). The use of tissue clearing techniques can answer much more queries than 2D systems. For example: What types of cells and/or structures do Aβ plaques interact with? Does the disease start in a specific area of the brain, possibly with NFTs in a subregion, then spread throughout the brain? Does it vary depending on the extent of the disease or the region of the brain being studied?
The researchers studied the entire brain of an AD mouse model stained for β-Amyloid. These questions can be further addressed. Researchers used tissue clearing combined with antibody staining to reveal Aβ plaques throughout the brain. Whole-brain tissue clearance was employed to observe a reduction in Aβ plaques generated by gamma frequency stimulation in the context of the whole brain of mice. This is an encouraging breakthrough towards future AD treatments.
Confocal reconstruction of the brain of a mouse model of AD, which was cleared and stained for amyloid.1
Clear3D™ Clearing Kits from Creative Biolabs are the optimal solution for next-generation 3D histology across a spectrum of tissues. They are the preferred choice for researchers seeking a straightforward approach to achieving expert-level tissue clearing.
If the product you're looking for isn't mentioned, or if you'd like to purchase one of our clearing kits, please contact us. Our professionals will aid you in picking the appropriate product for your unique application and locating the best product for the task.
Reference
- Martorell, Anthony J., et al. "Multi-sensory gamma stimulation ameliorates Alzheimer's-associated pathology and improves cognition." Cell 177.2 (2019): 256-271.
Clear a whole mouse brain.
A Clear3D™ reagent designed specifically for use with 3D cell culture models (e.g. organoids, spheroids, microtissues) in high throughput automated assays.
A rapid, easy-to-use, affordable and reversible tissue clearing technique for whole tissues.
Simple protocols; Standard laboratory equipment
Designed for imaging 3D CC models and high-throughput processing.
- NeuroMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P2275) (Cat#: NRP-0422-P2275)
- NeuroMab™ Anti-ApoC3 BBB Shuttle Antibody(NRZP-1022-ZP3503) (Cat#: NRZP-1022-ZP3503)
- NeuroMab™ Anti-F-Spondin/SPON1 Antibody, Clone N24875P (CBP11839) (Cat#: NRZP-0822-ZP4740)
- NeuroMab™ Anti-Amyloid Beta 1-15 Antibody(NRP-0422-P867) (Cat#: NRP-0422-P867)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- NeuroMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- NeuroMab™ Anti-FGFR1 Antibody(NRP-0422-P1244) (Cat#: NRP-0422-P1244)
- NeuroMab™ Anti-EPHB2 Antibody(NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- NeuroMab™ Anti-TREM2 Antibody(NRP-0422-P792) (Cat#: NRP-0422-P792)
- Human Blood Brain Barrier Model (Cat#: NCL-2103-P187)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- Human Microglia Cell Line HMC3, Immortalized (Cat#: NCL-2108P38)
- Mouse Midbrain Dopaminergic Neuron Cell MN9D (Cat#: NCL2110P059)
- Rat Muller Cell (Cat#: NCL2110P040)
- Rat Microglia Cell Line HAPI, Immortalized (Cat#: NCL2110P015)
- iNeu™ Microglia (Cat#: NCL-7P018)
- iNeu™ Human Motor Neurons (Cat#: NCL-2103-P71)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- rAAV-E-SARE-Cre-ERT2-PEST-WPRE-hGH polyA (Cat#: NTA-2010-TT342)
- AAV2/9-hEF1a-DIO-mCherry-P2A-TetTox-WPRE-pA (Cat#: NTA-2012-ZP268)
- AAV2/9-hSyn-Flpo-EGFP-WPRE-pA (Cat#: NTA-2012-ZP149)
- PRV-CAG-EGFP (Cat#: NTA-2011-ZP14)
- pAAV-syn-FLEX-jGCaMP8m-WPRE (Cat#: NTA-2106-P065)
- Dextran-CYanine5.5 (Cat#: NTA-2011-ZP118)
- pAAV-syn-FLEX-jGCaMP8f-WPRE (Cat#: NTA-2106-P064)
- AAV2/2Retro-CAG-DIO-EGFP-2A-TetTox-pA [Neural Tracing] (Cat#: NTA-2012-ZP303)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)