Cellular Dynamics Revealed by Digital Holographic Microscopy
With the development of new optical technologies (such as laser technology, confocal scanning microscope) and powerful numerical image processing (deconvolution technology, computational adaptive optics technology), optical microscopes have surpassed the traditional two-dimensional imaging technology and turned to the reproduction of high-resolution three-dimensional objects.
Digital Holographic Microscope (DHM)
Digital holographic microscope (DHM) is a new optical method that can provide real-time three-dimensional images of transparent living cells without the use of any contrast agent. DHM quantitatively studies cell dynamics by measuring the phase shift of living cells in the transmitted wavefront. Due to the high time stability of the phase signal (equivalent to N/1800) and low acquisition time (down to 20 μs), the dynamic monitoring of cells is visualized.
Working principle: The coherent light (A = 658 nm) generated by a VCSEL laser diode is split by a beam splitter (BS). The sample (S) was illuminated by a beam of light through the condenser (C). The microscope objective lens (MO) collects the transmitted light and forms an object wave (O), which interferes with the reference beam (R) to produce a hologram recorded by a digital CCD camera.
DHM Analyzes Neuron Network Activity
A distinctive feature of neural tissue is the intricate network of synaptic connections between neurons of different shapes. The development of technology that provides non-invasive resolution to local neural network activities is a prerequisite for a comprehensive study of the relationship between spatiotemporal activity patterns and neural network development and information processing.
- Use quantitative phase DHM (QP-DHM) to measure neuronal activity in transmembrane water movement imaging
- Use DHM system to record spatiotemporal cell information
At present, multi-modal microscopes, QP-DHM, and electrophysiological devices have been developed to study the early neuronal responses induced by glutamate in the primary culture of mouse cortical neurons. Using appropriate pharmacological tools to analyze the effects of agonists (such as glutamate) or antagonists (such as bitterness, furosemide, and bumetamide) on QP-DHM signal changes, provides a new approach for studying the functional properties of target membrane proteins.
The shear DHM recorded the video rate data of living biological cells fluctuating in the axial film with nanometer sensitivity and then extracts features from the reconstructed phase map of each time segment cell for classification. The time-varying data of each extracted feature is input into a periodic bidirectional long-term memory (BI-LSTM) network, which classifies and recognizes cells according to the time-varying behavior of the cells for use in disease diagnosis.
QP-DHM is an optical imaging technology that can obtain quantitative phase contrast images of transparent living cells from a single recorded hologram without using any dyes. The principle of interference applied to phase detection and reconstruction of digital holograms allows monitoring of cell dynamics with nano-axial sensitivity. In addition to measuring cell surface morphology and intracellular refractive index (RI), it can also measure various biophysical parameters, including dry mass, absolute volume, nano-scale and biomechanical properties of membrane fluctuations, water permeability.
Creative Biolabs has advanced technology and a complete laboratory platform, which can provide you with professional analysis and strategies in the fields of neuroscience and molecular biology. Please feel free to contact us if you are interested or have any questions.
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- iNeuMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- iNeuMab™ Rabbit Anti-LRRK2 Monoclonal Antibody (CBP1887) (Cat#: NAB-08-PZ735)
- iNeuMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- iNeuMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- iNeuMab™ Mouse Anti-LRP1 Monoclonal Antibody (CBP3363) (Cat#: NAB-0720-Z6479)
- iNeuMab™ Anti-F-Spondin/SPON1 Antibody, Clone 3F4 (Cat#: NRZP-0822-ZP4740)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Mouse Retinal Ganglion Cell Line RGC-5 (Cat#: NCL2110P154)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- Green Fluorescent Alpha-synuclein Cell Line (Cat#: NCL2110P209)
- iNeu™ Human Motor Neurons (Cat#: NCL-2103-P71)
- Mouse Microglia Cell Line BV-2, Immortalized (Cat#: NCL2110P153)
- Mouse Midbrain Dopaminergic Neuron Cell MN9D (Cat#: NCL2110P059)
- iNeu™ Human Sensory Neurons (Cat#: NCL-2103-P62)
- Mouse Retinal Ganglion Cells (Cat#: NCL2110P145)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)