Calcium Homeostasis in Glia and Neurons
Introduction to Calcium Homeostasis
The calcium concentration fluctuation in cells serves as the signal for various processes in neurons. And Ca²⁺ can trigger the release of neurotransmitters. What’s more, Ca²⁺ plays important roles in multiple neuronal functions, including synaptic plasticity, neuronal excitability, integration of electrical signals, gene expression, metabolism, and programmed cell death. Due to the key role in processes in neuronal excitability, calcium homeostasis is tightly regulated in glia and neurons. Recent studies have shown that impaired calcium homeostasis will lead to the occurrence of aging and the increased sensitivity of related neurons to injury.
Fig.1 Schematic representation of the main Ca²⁺ steady-state mechanical component in neurons. (Nikoletopoulou, 2012)
Molecular Mechanisms for Neuronal Calcium Homeostasis
Recent studies showed that the passive influx of calcium ions is achieved through the plasma membrane Ca²⁺ channel along its electrochemical gradient. According to the control mechanism between the open and closed conformations, these channels can be classed into two major groups, which are voltage-gated Ca²⁺ channels and channels gated by ligand binding.
- Channels gated by voltage are multi-protein complexes composed of a series of subunits, such as α1, α2δ, β1-4, and γ. Among them, the α1 is the largest subunit associated with distinct auxiliary protein subunits. The pharmacological and physiological diversity of the Ca²⁺ channel is mainly derived from the existence of multiple α1 subunits, and these auxiliary subunits can regulate the functional properties of the Ca²⁺ channel complex.
- Channels gated by ligand binding refers to the channel activation caused by the interaction between the ligand and its plasma membrane receptor. L-glutamate has been served as the most prominent ligand of this type in the nervous system. In the vertebrate central nervous system (CNS), it is the most widespread excitatory transmitter that activates two classes of receptors, including ionotropic receptors and metabotropic receptors.
Intracellular Calcium Homeostasis in Neurons
In neurons, there are a series of channels, buffers, as well as sensors in the endoplasmic reticulum (ER) to act as a dynamic Ca²⁺ store. Under physiological stimulation, Ca²⁺ can be released by ER. In Golgi, the Ca²⁺ uptake involves two groups of Ca²⁺ pumps: Sarco(endo)plasmic reticulum Ca²⁺ ATPases (SERCAs) and secretory-pathway Ca²⁺-ATPases (SPCAs). Recent studies have shown that the contribution of SERCAs and SPCAs for Ca²⁺ uptake seems to be cell-type-dependent. In addition, mitochondria also function as Ca²⁺ buffers.
Creative Biolabs has been a long-term expert in the field of neurosciences research, now we provide a series of services and products for our clients all over the world. If you are interested in our services and products, please do not hesitate to contact us for more detailed information.
Reference
- Nikoletopoulou, V. Tavernarakis, N.; Calcium homeostasis in aging neurons. Frontiers in genetics. 2012, 3: 200.
- iNeuMab™ Anti-Alpha Synuclein BBB Shuttle Antibody (NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- iNeuMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- iNeuMab™ Anti-Alpha Synuclein Antibody (NRP-0422-P614) (Cat#: NRP-0422-P614)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P2293) (Cat#: NRP-0422-P2293)
- iNeuMab™ Anti-F-Spondin/SPON1 Antibody, Clone 3F4 (Cat#: NRZP-0822-ZP4740)
- iNeuMab™ Anti-FGFR1 Antibody (NRP-0422-P1244) (Cat#: NRP-0422-P1244)
- iNeuMab™ Anti-TREM2 BBB Shuttle Antibody (NRZP-1022-ZP4114) (Cat#: NRZP-1022-ZP4114)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- iNeuMab™ Anti-Amyloid Beta 1-15 Antibody (NRP-0422-P867) (Cat#: NRP-0422-P867)
- Human Blood Brain Barrier Model (Cat#: NCL-2103-P187)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Human Retinal Epithelial Cell ARPE-19 (Cat#: NCL2110P069)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- iNeu™ Human Sensory Neurons (Cat#: NCL-2103-P62)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- Mouse Retinal Ganglion Cell Line RGC-5 (Cat#: NCL2110P154)
- Green Fluorescent Tau cell Line (Cat#: NCL2110P219)
- Mouse Microglia Cell Line BV-2, Immortalized (Cat#: NCL2110P153)
- Human Microglia Cell Line HMC3, Immortalized (Cat#: NCL-2108P38)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)