Calcium Homeostasis in Glia and Neurons
Introduction to Calcium Homeostasis
The calcium concentration fluctuation in cells serves as the signal for various processes in neurons. And Ca²⁺ can trigger the release of neurotransmitters. What’s more, Ca²⁺ plays important roles in multiple neuronal functions, including synaptic plasticity, neuronal excitability, integration of electrical signals, gene expression, metabolism, and programmed cell death. Due to the key role in processes in neuronal excitability, calcium homeostasis is tightly regulated in glia and neurons. Recent studies have shown that impaired calcium homeostasis will lead to the occurrence of aging and the increased sensitivity of related neurons to injury.
Fig.1 Schematic representation of the main Ca²⁺ steady-state mechanical component in neurons. (Nikoletopoulou, 2012)
Molecular Mechanisms for Neuronal Calcium Homeostasis
Recent studies showed that the passive influx of calcium ions is achieved through the plasma membrane Ca²⁺ channel along its electrochemical gradient. According to the control mechanism between the open and closed conformations, these channels can be classed into two major groups, which are voltage-gated Ca²⁺ channels and channels gated by ligand binding.
- Channels gated by voltage are multi-protein complexes composed of a series of subunits, such as α1, α2δ, β1-4, and γ. Among them, the α1 is the largest subunit associated with distinct auxiliary protein subunits. The pharmacological and physiological diversity of the Ca²⁺ channel is mainly derived from the existence of multiple α1 subunits, and these auxiliary subunits can regulate the functional properties of the Ca²⁺ channel complex.
- Channels gated by ligand binding refers to the channel activation caused by the interaction between the ligand and its plasma membrane receptor. L-glutamate has been served as the most prominent ligand of this type in the nervous system. In the vertebrate central nervous system (CNS), it is the most widespread excitatory transmitter that activates two classes of receptors, including ionotropic receptors and metabotropic receptors.
Intracellular Calcium Homeostasis in Neurons
In neurons, there are a series of channels, buffers, as well as sensors in the endoplasmic reticulum (ER) to act as a dynamic Ca²⁺ store. Under physiological stimulation, Ca²⁺ can be released by ER. In Golgi, the Ca²⁺ uptake involves two groups of Ca²⁺ pumps: Sarco(endo)plasmic reticulum Ca²⁺ ATPases (SERCAs) and secretory-pathway Ca²⁺-ATPases (SPCAs). Recent studies have shown that the contribution of SERCAs and SPCAs for Ca²⁺ uptake seems to be cell-type-dependent. In addition, mitochondria also function as Ca²⁺ buffers.
Creative Biolabs has been a long-term expert in the field of neurosciences research, now we provide a series of services and products for our clients all over the world. If you are interested in our services and products, please do not hesitate to contact us for more detailed information.
Reference
- Nikoletopoulou, V. Tavernarakis, N.; Calcium homeostasis in aging neurons. Frontiers in genetics. 2012, 3: 200.
- NeuroMab™ Anti-pTau Antibody(NRP-0422-P1719) (Cat#: NRP-0422-P1719)
- NeuroMab™ Anti-GARP Antibody(NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- NeuroMab™ Anti-CD32b Antibody(NRP-0422-P1803) (Cat#: NRP-0422-P1803)
- NeuroMab™ Anti-Integrin αvβ8 BBB Shuttle Antibody(NRZP-1222-ZP1218) (Cat#: NRZP-1222-ZP1218)
- NeuroMab™ Anti-TNFα BBB Shuttle Antibody(NRZP-1022-ZP4105) (Cat#: NRZP-1022-ZP4105)
- NeuroMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1684) (Cat#: NRP-0422-P1684)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1760) (Cat#: NRP-0422-P1760)
- NeuroMab™ Anti-TREM2 Antibody(NRP-0422-P792) (Cat#: NRP-0422-P792)
- Mouse Microglia from C57BL/6 (Cat#: NCL-21P6-082)
- Mouse Retinal Ganglion Cells (Cat#: NCL2110P145)
- iNeu™ Microglia (Cat#: NCL-7P018)
- Human Retinal Epithelial Cell ARPE-19 (Cat#: NCL2110P069)
- Human Brain Astroblastoma U-87 MG (Cat#: NCL2110P117)
- Mouse Microglia N9 (Cat#: NCL2110P073)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Green Fluorescent Tau SH-SY5Y cell Line (Cat#: NCL2110P219)
- iNeu™ Human Motor Neurons (Cat#: NCL-2103-P71)
- Rat Immortalized Retinal Muller Cell Line rMC-1 (Cat#: NCL-2106-S93)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- rAAV-E-SARE-Cre-ERT2-PEST-WPRE-hGH polyA (Cat#: NTA-2010-TT342)
- Dextran-CYanine5.5 (Cat#: NTA-2011-ZP118)
- pAAV-syn-jGCaMP8m-WPRE (Cat#: NTA-2106-P062)
- rAAV-CAG-DIO-G-Flamp1 (Cat#: NRZP-0722-ZP719)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- AAV2/2Retro-CAG-DIO-EGFP-2A-TetTox-pA [Neural Tracing] (Cat#: NTA-2012-ZP303)
- AAV-mDLX-CRE-tdTomato (Cat#: NRZP-0622-ZP721)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)