Tel:
Fax:
Email:
Creative Biolabs

Motor Neuron related Patch Clamp Assay Service

The patch clamp technique is employed to record spontaneous firing, action potentials, and ion channel activity in motor neurons. Our automated patch clamp (APC) platform enables us to conduct high-throughput electrophysiological characterization of hiPSC-derived motor neurons. To learn more about our products and services, submit a project request, or request a quote, please contact us today.

Automated Patch Clamp (APC) Platform

The fully automated patch clamp detection technology represents a significant advancement in neurobiological research, offering the ability to automate the measurement of cell membrane ion channel currents. This technology employs flat glass chip electrodes to record ion channel currents, with the experimental operation controlled by a computer and a built-in program that automates various processes, including vesicle preparation, sealing, membrane perfusion, drug perfusion treatment, and electrical signal recording.

The APC platform offers the following advantages:

  • High Throughput Data Acquisition
  • Multiple Recording Modes
  • High Level of Automation
  • High Impedance and Low Noise

High-throughput Screening of hiPSC–derived Motor Neurons Using APC Platform

The enhanced quality of hiPSC-derived cell lines and the high-throughput nature of APC provide an opportunity to leverage both technologies for disease modeling and drug screening.

The APC is also capable of recording the action potential of neurons and changes in ion channel currents, thus enabling the analysis of the electrophysiological properties of neurons. To illustrate, in the study of chronic pain, the pain mechanism can be explored by recording the action potential and TRPV1 current changes of dorsal root ganglion neurons in rats with bone cancer pain. Furthermore, this technique can also be used to study neuronal excitability, synaptic transmission, and synaptic plasticity.

Case study: Assessing compound effects on neurons with APC

The hiPSC motor neuron disease model, derived from a spinal muscular atrophy (SMA) patient and control cells from healthy subjects, was subjected to electrophysiological characterization on the APC platform.

Fig 1 APC to evaluate compound effects on hiPSC-derived motor neurons.Fig.1 APC evaluation of compound effects on hiPSC – derived motor neurons.1 The study was conducted to evaluate the effects of a compound on the properties of the Nav channel in SMA hiPSC-neurons. The figure depicts parallel recordings of control neurons (black), SMA neurons (orange), and SMA neurons treated with SMN-C3 during culturing (blue).

hiPSC Motor Neurons Derived from Patients

At Creative Biolabs, we also provide high-quality hiPSC motor neurons derived from patients with spinal muscular atrophy (SMA) or amyotrophic lateral sclerosis (ALS), which have been verified to have good electrophysiological properties. We offer a comprehensive, integrated solution, from sample acquisition to data analysis, and from initial concept to final result.

At Creative Biolabs, our motor neurons patch clamp service employs cutting-edge, automated patch clamp technology to meticulously record the electrophysiological properties of neurons, offering dependable data support for neuroscience research. We invite you to contact us to discuss your project plans in detail.

Reference

  1. Rosholm, Kadla R., et al. "Adventures and advances in time travel with induced pluripotent stem cells and automated patch clamp." Frontiers in Molecular Neuroscience 15 (2022): 898717. Distributed under Open Access license CC BY 4.0, without modification.
For Research Use Only. Not For Clinical Use.
In Vitro Services
Hot Products
Fill out this form for a quote Inquiry Form Send Inquiry
Inquiry Basket
compare

Send inquiry