Calcium Imaging Assay Service
Neuronal calcium imaging technology is an important tool in current neuroscience research. The technology is based on the tight relationship between calcium ion concentration and neuronal activity, and converts changes in calcium ion concentration into changes in fluorescence intensity using special fluorescent dyes or protein fluorescent probes.
Applications
- Functional imaging of isolated neuronal synapses
- Monitoring calcium signals in the hippocampus
- Detecting neuronal activity
Advantages
Imaging capabilities with high resolution and multimodality | Monitor neural activity in real time | Multicolor imaging and long-term observation | High level of sensitivity and high spatial resolution |
Case Study: Monitoring calcium signaling in cortical neurons differentiated from human stem cells
Human neural stem cells were differentiated into cortical neuronal networks that could be maintained as living cultures in a dish for up to 120 days.
Fig.1 Neuronal differentiation of human neural stem cells (NSCs). A) Workflow of neuronal maintenance and differentiation. B)
Phase contrast images of NSCs and cultures during differentiation.1
Fig.2 Representative images of cortical neuronal marker staining.1
To characterize the development of neuronal activity, intracellular calcium levels were measured using Fluo-4 AM and Fura-2 AM. This was done to assess the changes in intracellular calcium transients during in vitro development.
Fig.3 Ca2+ transients during in vitro differentiation.1 A) to E) show calcium transients recorded at 7, 14, 21, 30, and 45 DIV.1
Available Neuronal Models
Available Models | Descriptions |
Human iPSC-Derived neurons | Patient-derived iPSCs are a popular model for studying neurodegenerative diseases because they retain the genetic and epigenetic information of the donor while still having the ability to proliferate. These properties allow researchers to study several different cell types with the same genetic background or to perform experiments that require large amounts of material. |
Primary Cultures | Primary cell culture is the gold standard for neuroscience research and has historically been a key platform for basic research and drug discovery. At Creative Biolabs, we have a broad range of primary brain neurons to provide a successful foundation for your calcium imaging studies. |
Neuronal Cell Lines | Leveraging cell line model offers significant advantages for preliminary calcium investigation, including reliable and consistent readouts, coupled with cost-effectiveness. |
Ex vivo brain slices | Brain slice cultures preserve the complex cellular and spatial architecture of the brain, making them the closest in vitro model to in vivo conditions. Therefore, experiments performed using these cultures can provide data similar to in vivo experiments while avoiding the long time required for in vivo experiments. |
At Creative Biolabs, we offer a range of options for customizing neuronal calcium imaging to meet your specific requirements. In addition, we provide high-quality materials, data, and insights to enhance the success of your project. Please contact us to discuss your project plans in more detail.
Reference
- Sharma, Yojet, et al. "In vitro human stem cell derived cultures to monitor calcium signaling in neuronal development and function." Wellcome Open Research 5 (2020). Distributed under Open Access license CC BY 4.0, without modification.
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P1684) (Cat#: NRP-0422-P1684)
- iNeuMab™ Anti-GARP Antibody (NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- iNeuMab™ Anti-FGFR1 Antibody (NRP-0422-P1244) (Cat#: NRP-0422-P1244)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- iNeuMab™ Anti-CD20 Antibody (NRP-0422-P1230) (Cat#: NRP-0422-P1230)
- iNeuMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- iNeuMab™ Anti-F-Spondin/SPON1 Antibody, Clone 3F4 (Cat#: NRZP-0822-ZP4740)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- iNeuMab™ Anti-pTau Antibody (NRP-0422-P1719) (Cat#: NRP-0422-P1719)
- iNeuMab™ Anti-GD2 Antibody (NRZP-1222-ZP767) (Cat#: NRZP-1222-ZP767)
- Mouse Microglia N9 (Cat#: NCL2110P073)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- Mouse Glioma Cell Line GL-261-Luc (Cat#: NCL-2108P06)
- Human Blood Brain Barrier Model (Cat#: NCL-2103-P187)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Mouse Microglia from C57BL/6 (Cat#: NCL-21P6-082)
- Immortalized Human Cerebral Microvascular Endothelial Cells (Cat#: NCL-2108-P020)
- Human Neurons Isolated from Cortex (Cat#: NCL-21P6-023)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)