Nonviral Tracers
Non-viral traditional tracers are effective tools for visualizing a large number of neuronal connections. These tracers are often injected and can be used in any animal of interest, eliminating the necessity for genetically modified mice with a specific genetic background.
Neuroanatomical tracing was first discovered by Waller, who found that damaged neuronal axons gradually degenerate from the lesion site to the distal end. Subsequently, "Waller-like" degeneration of neurons was found in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). In the 1960s, chemical tracers were developed and became the mainstream solution for neurotracing for a long time.
Available Types
Creative Biolabs' nonviral tracers are versatile, highly sensitive, and capable of selective anterograde and retrograde labeling and have been used to study neural circuits.
Retrograde Nonviral Tracers
Chemical neurotracers include radiolabeled amino acids, which can be used to visualize and track peripheral connections in the central nervous system. 2-Deoxyglucose, which was later employed, also had substantial effects on neurotracing. Retrograde tracers can move from the axon terminals to the cell body using retrograde transport. In the following investigations, researchers used horseradish peroxidase (HRP), cholera toxin B (CTB), tetanus toxin, and hydroxyamidine (Fluoro-Gold) as retrograde tracers.
Anterograde Nonviral Tracers
Anterograde tracers move downstream of the projection via anterograde transport. For anterograde tracers, researchers have developed biotinylated dextran amines (BDAs), phytohemagglutinin L (PHA-L), and wheat germ agglutinin (WGA) for simultaneous anterograde and retrograde tracers.
Viral Tracers
Nonviral tracer systems have obvious limitations. They can only visualize the whole brain projection connections of neurons, but cannot specifically subdivide the projected cell types and synaptic connection methods. In contrast, viral tracer strategies can effectively target specific cell types, and by modifying the virus, specific small molecule tracers, such as WGA, can be effectively expressed in the target cells. As a result, viral tracing technology has gradually become a mainstream technology in neuroscience.
Creative Biolabs offers a range of anterograde and retrograde non-viral tracers. In addition, we are expanding our services to include custom adeno-associated viruses (AAVs). Please contact us to accelerate your neural tracing studies.



Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Carboxylic acid (-COOH); reacts with amino groups
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Strong tissue penetration ability; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Water soluble, low toxicity
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Strong tissue penetration ability, less affected by biological autofluorescence
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Water soluble, low toxicity
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

Low toxicity; Fluorescent labeling; Different molecular weights
- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

- Tracer Type:
- Protein Tracer; Neurotoxin
- Applications:
- Neural Tracing

- Tracer Type:
- Protein Tracer; Neurotoxin
- Applications:
- Neural Tracing

- Tracer Type:
- Protein Tracer; Neurotoxin
- Applications:
- Neural Tracing

- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing

- Tracer Type:
- Dextan Conjugate
- Applications:
- Neural Tracing
- iNeuMab™ Anti-EPHB2 Antibody (NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- iNeuMab™ Mouse Anti-LRP1 Monoclonal Antibody (CBP3363) (Cat#: NAB-0720-Z6479)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- iNeuMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P2275) (Cat#: NRP-0422-P2275)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- iNeuMab™ Anti-Alpha Synuclein BBB Shuttle Antibody (NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P1684) (Cat#: NRP-0422-P1684)
- iNeuMab™ Anti-SEZ6 Antibody (NRP-0422-P517) (Cat#: NRP-0422-P517)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- Mouse Microglia N9 (Cat#: NCL2110P073)
- Mouse Retinal Ganglion Cell Line RGC-5 (Cat#: NCL2110P154)
- Human Brain Astroblastoma U-87 MG (Cat#: NCL2110P117)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- iNeu™ Human Neural Stem Cell Line (Cat#: NCL200552ZP)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- Human Dental Pulp Stem Cells (Cat#: NRZP-1122-ZP113)
- iNeu™ Human Motor Neurons (Cat#: NCL-2103-P71)
- Rat Glioma Cell Line C6 (Cat#: NCL2110P346)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)