Tel:
Fax:
Email:
Creative Biolabs

Neuronal Plasticity Assay

The human brain is a vast network frame that contains approximately 90 billion specialized cells that control our behavior and activities in whole. One of the most important and fundamental features of the brain is its ability to adapt to changes, which is also known as "neuronal plasticity". The plasticity of the nervous system grants us the ability to learn and remember as intelligent beings. Creative Biolabs' goal is to engage with one or more corporate partners in the biopharmaceutical industry. We will not only provide comprehensive quality data but also timely and effective solutions to any challenges that you face in neuronal plasticity.

Introduction to Neuronal Plasticity

Neuronal plasticity has been discovered at multiple scales. The top level is the adaptive behavior of organisms, the ability to learn and remember. The deeper level is the transformation in the structure and function of neuronal networks. There are related theories that if some of the neurons are selectively strengthened and co-excited, then the vinculum between these co-active neurons can be sustained and, more importantly, reimplemented in the future. Changes in local circuits and representational maps are caused by physical changes in the electrical network of neurons at the cellular level. Upon stimulation, neuronal, synaptic, protein, or genome structure transforms, transitioning from structural to functional plasticity.

Schematic view and microscopic images of neurons and flow of information. Fig 1. Schematic view and microscopic images of neurons and flow of information. (Power & Schlaggar, 2017)

As for the molecular mechanisms of neuronal plasticity, it is currently recognized that the changes in neuronal structure and the generation of plasticity are caused by the combination of external factors, such as environmental stimuli, and genetic and biochemical influences. Receptors and different proteins in the synaptic compartment can achieve effective plastic changes. And all the known molecular mechanisms of neural transmission signaling pathways directly or indirectly participate in the realization of plasticity.

Neuronal Plasticity Assay

Neuronal plasticity is defined as the ability of the nervous system to respond to and remember new experiences by altering molecular structure, function, and network framework, in order to adapt to certain changes affecting neurological conditions. In-depth research on neuronal plasticity contributes to our further understanding of the nature of learning and memory abilities, as well as brain injury recovery. Neurogenesis, synaptogenesis, and neurite outgrowth/degeneration are essential features in the study of brain function. Creative Biolabs provides a range of customized assays to evaluate the neuronal plasticity, which mainly include but are not limited to:

As the specific molecular mechanisms that generate neuroplasticity are still not fully understood, the determination of neuroplasticity is mostly performed in cellular and animal models. Fluorescence staining and neuronal imaging are the bases of neuronal plasticity research, by which neuronal cell morphology and structural changes can be directly visualized through imaging observation. In addition, many experimental theories based on animal models have been developed to observe how neuronal plasticity shapes biological learning, memory and conditioning through behavioral analysis.

Single-whisker experiments can measure neuronal plasticity from a behavioral analysis perspective. Fig 2. Single-whisker experiments can measure neuronal plasticity from a behavioral analysis perspective. (Sims, et al., 2015)

Our Tailored Neuronal Plasticity Assay Services

Creative Biolabs provides professional neuronal plasticity assay services to enhance your interpretation of pivotal systems and events in neuronal plasticity, and help you characterize the signaling and metabolic processes underlying specific neuronal plasticity phenomena. In addition to neuronal histological analysis and imaging analysis, we also provide you with a range of cell lines and animal models that can be used to study neuronal plasticity.

Please contact us for further information if you have any demands.

References

  1. Power, J.D.; Schlaggar, B.L. Neural plasticity across the lifespan. Wiley Interdiscip Rev Dev Biol. 2017, 6(1): 216.
  2. Sims, R.E.; et al. Astrocyte and neuronal plasticity in the somatosensory system. Neural Plasticity. 2015, 10: 732014.
For Research Use Only. Not For Clinical Use.
Service
Hot Products
Fill out this form for a quote Inquiry Form Send Inquiry
webinar
Inquiry Basket
compare

Send inquiry