Postoperative Pain Drug Discovery Service
Creative Biolabs has years of experience and cutting-edge technologies to provide a variety of services in the field of life science to customers worldwide. With the development of neuroscience and the increasing demand for drug discovery and development, we integrate global resources to provide customized one-stop solutions to facilitate the translation of results from basic science studies of postoperative pain to further preclinical studies, which might contribute to clinical and commercial applications.
Background of Postoperative Pain
There are hundreds of millions of people worldwide who undergo surgical operations each year. Effective postoperative management of patients is able to alleviate pain, reduce suffering, facilitate healing and recovery, and also prevent complications. However, postoperative management after surgery is still suboptimal to date. Patients suffer from acute or chronic postoperative pain after surgery, which not only results from inflammation alone but also because of the isolated impairment of nerves and neural tissues. The pathogenesis of postoperative pain may result from both peripheral and central sensitization as well as alterations in neuroplasticity.
Mechanism Studies of Postoperative Pain
Postoperative pain is related to the spinal sensitization induced and maintained by increased phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. The AMPA subunit glutamate receptor 1 (GluR1) interacts with the regulatory protein stargazin and is translocated to the neuronal membrane. The trafficking of Ca2+-permeable AMPA receptors in the postsynaptic density is increased, hence facilitating spinal nociceptive transmission. In addition, postoperative pain is related to GABA neurotransmission within the thalamus, peripheral sensitization, as well as the activation of the hypothalamic-pituitary-adrenal axis-induiced hypersensitivities.
Fig.1 Postoperative pain is associated with increased trafficking of the GluR1 subunit of AMPA-receptors by phosphorylation of Ser-831. (Pogatzki-Zahn, 2017)
Postoperative Pain Solutions at Creative Biolabs
Understanding the basic mechanisms of postoperative pain allows researchers to identify effective therapeutics to optimize the patient's outcome after surgery. Creative Biolabs is committed to offering one-stop solutions for postoperative pain studies, including a full range of in vitro, in vivo, and ex vivo assays with cell culture and animal models as well as cutting-edge imaging and electrophysiology technologies, which allow researchers to utilize the neurophysiological assays with animal models to investigate the mechanisms of action in postoperative pain, and thus develop targeting therapeutics. We provide customized intracellular Ca2+ imaging service and GABA neurotransmission services based on the mechanisms to help researchers find potential targets for postoperative pain, such as spinal aminobutyric acid (GABA)-receptors, glutamate transporter (GluT), spinal cannabinoid receptors, and acid-sensing ion channels (ASICs), and screen promising drug candidates. The following scheme demonstrates detailed information about our platform and services for translational research and integrated research in postoperative pain.
If you have the intention to learn more about preclinical postoperative pain drug discovery and related studies, please don't hesitate to contact us for more details.
Reference
- Pogatzki-Zahn, E. M.; et al. Postoperative pain-from mechanisms to treatment. Pain reports. 2017: 2(2).
- NeuroMab™ Anti-FGFR1 Antibody(NRP-0422-P1244) (Cat#: NRP-0422-P1244)
- NeuroMab™ Anti-Amyloid Beta 1-15 Antibody(NRP-0422-P867) (Cat#: NRP-0422-P867)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- NeuroMab™ Anti-ApoC3 BBB Shuttle Antibody(NRZP-1022-ZP3503) (Cat#: NRZP-1022-ZP3503)
- NeuroMab™ Anti-ApoC3 BBB Shuttle Antibody(NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- iNeuMab™ Anti-F-Spondin/SPON1 Antibody, Clone 3F4 (Cat#: NRZP-0822-ZP4740)
- NeuroMab™ Anti-TREM2 BBB Shuttle Antibody(NRZP-1022-ZP4114) (Cat#: NRZP-1022-ZP4114)
- NeuroMab™ Anti-GD2 Antibody(NRZP-1222-ZP767) (Cat#: NRZP-1222-ZP767)
- iNeuMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- iNeu™ Human Schwann Cell (Cat#: NCL-2103-P63)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Human Astrocytes, Immortalized (Cat#: NCL-2105-P182-AM)
- Human Microglia Cell Line HMC3, Immortalized (Cat#: NCL-2108P38)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- Rat Glioma Cell Line C6 (Cat#: NCL2110P346)
- Mouse Microglia from C57BL/6 (Cat#: NCL-21P6-082)
- Green Fluorescent BACE1 Cell Lines (Cat#: NCL2110P214)
- iNeu™ Human Motor Neurons (Cat#: NCL-2103-P71)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- pAAV-syn-FLEX-jGCaMP8f-WPRE (Cat#: NTA-2106-P064)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- pAAV-syn-FLEX-jGCaMP8m-WPRE (Cat#: NTA-2106-P065)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- Dextran, Cy5 Labeled, 2000 kDa (Cat#: NRZP-0722-ZP22)
- pAAV-syn-jGCaMP8m-WPRE (Cat#: NTA-2106-P062)
- pAAV-hSyn-DIO-XCaMP-R-WPRE (Cat#: NTA-2012AD-P508)
- rAAV-E-SARE-Cre-ERT2-PEST-WPRE-hGH polyA (Cat#: NTA-2010-TT342)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)