Amyloid-beta Aggregates Determination Assay
Alzheimer's disease (AD) is a neurodegenerative disease that is widely existed in the elderly, accompanied by symptoms such as memory loss, decreased cognitive ability, and emotional changes. The error folding and extracellular agglomeration of amyloid-β (Aβ) peptides cause the deposition of Aβ-like protein plaques in the brain, which are one of the important hallmarks of AD. In order to explore the aggregation process of Aβ, plenty of technologies have been applied in the past few years. Creative Biolabs has successfully developed an advanced Aβ aggregation assay platform and diverse cell models to meet your specific needs.
Isoforms of Aβ
Aβ peptide is considered to be a promising biomarker for the early diagnosis and progress of AD. The isoforms of Aβ in human cerebrospinal fluid include Aβ1–28, Aβ1-33, Aβ1-34, Aβ1-37, Aβ1-38, Aβ1-39, Aβ1-40 and Aβ1-42. The most important subtypes are Aβ1-40 and Aβ1-42 because they exist in more than 90% of plaques. Aβ1-40 is the most abundant while Aβ1-42 is easier to aggregate. A large number of genetic evidence indicates that the aggregation of Aβ1-40 and Aβ1-42 is the main reason for the progress of AD. Therefore, inhibiting Aβ self-assembly is an attractive strategy for the treatment of AD.
Introduction to Aβ Aggregation
Since Aβ peptides play an important role in senile plaque formation, exploring the structure and biochemical properties of Aβ will provide a better understanding of AD at the molecular level. Aβ monomers assemble into different forms of soluble oligomers, which then form regular fibrils. The aggregation process of Aβ is related to several factors, such as concentration, pH, and temperature. It has been reported that Aβ aggregates can produce neurotoxicity through different pathways. In addition, Aβ aggregates can be assembled from different allotypes, such as Aβ1-40 and Aβ1-42, which vary in length and concentration, and may have different toxicities.
Fig.1 Schematic representation of Aβ aggregation. (Huang & Liu, 2020)
Methods for Aβ Aggregate Determination at Creative Biolabs
The aggregation tendency of Aβ is an important factor in AD pathophysiology. Therefore, techniques to characterize, quantify and visualize different Aβ species are highly desirable.
- Traditional methods
At Creative Biolabs, enzyme-linked immunosorbent assay (ELISA) and mass spectrometry (MS) are the most commonly used methods to detect Aβ monomers and aggregates.
- Biosensor approaches
Creative Biolabs provides new biosensor approaches with low cost and high sensitivity such as surface plasmon resonance, localized surface plasmon resonance, electrochemistry, resonant light scattering, and speckle immunoassays.
- Electrochemical methods
At Creative Biolabs, electrochemical methods such as cyclic voltammetry (CV), differential pulse (DP), and square wave (SW) have gradually emerged as complementary tools for studying Aβ peptide aggregation and elucidating AD mechanisms.
Different techniques have their advantages and disadvantages, and using a combination of different techniques to study Aβ aggregation will reveal optimal information. With diverse cell models and rich experience, Creative Biolabs focuses on providing the most suitable testing services for global customers, please contact us for a detailed quotation.
Reference
- Huang, Y. R.; Liu, R. T. The toxicity and polymorphism of β-amyloid oligomers. International Journal of Molecular Sciences. 2020, 21(12): 4477.
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P2293) (Cat#: NRP-0422-P2293)
- NeuroMab™ Anti-TREM2 Antibody(NRP-0422-P792) (Cat#: NRP-0422-P792)
- NeuroMab™ Anti-CD20 Antibody(NRP-0422-P1230) (Cat#: NRP-0422-P1230)
- NeuroMab™ Anti-SEZ6 Antibody(NRP-0422-P517) (Cat#: NRP-0422-P517)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1686) (Cat#: NRP-0422-P1686)
- NeuroMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- NeuroMab™ Anti-GD2 Antibody(NRZP-1222-ZP767) (Cat#: NRZP-1222-ZP767)
- NeuroMab™ Anti-EPHB2 Antibody(NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- NeuroMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- Rat Muller Cell (Cat#: NCL2110P040)
- Mouse Retinal Ganglion Cell Line RGC-5 (Cat#: NCL2110P154)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- iNeu™ Human Sensory Neurons (Cat#: NCL-2103-P62)
- Immortalized Human Cerebral Microvascular Endothelial Cells (Cat#: NCL-2108-P020)
- Human Brain Astroblastoma U-87 MG (Cat#: NCL2110P117)
- iNeu™ Human Neural Stem Cell Line (Cat#: NCL200552ZP)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- AAV2/9-hEF1a-DIO-mCherry-P2A-TetTox-WPRE-pA (Cat#: NTA-2012-ZP268)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- pAAV-hSyn-DIO-XCaMP-R-WPRE (Cat#: NTA-2012AD-P508)
- Dextran, NHS Activated, 40 kDa (Cat#: NRZP-0722-ZP124)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- AAV-mDLX-CRE-tdTomato (Cat#: NRZP-0622-ZP721)
- AAV2/2Retro-CAG-DIO-EGFP-2A-TetTox-pA [Neural Tracing] (Cat#: NTA-2012-ZP303)
- AAV2/9-hSyn-Flpo-EGFP-WPRE-pA (Cat#: NTA-2012-ZP149)
- rAAV-CAG-DIO-G-Flamp1 (Cat#: NRZP-0722-ZP719)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)