DELTA Introduction: A New Brain Mapping Tool
Synaptic plasticity responds to experience by altering neuronal connections, which is thought to underlie learning and memory. However, the loci at which synaptic plasticity associated with learning occurs and the extent to which plasticity is localized or widely distributed remain unknown. Recently, Nelson Spruston of the Howard Hughes Medical Institute published a related paper in Nature Neuroscience proposing a method for whole-brain measurement of synaptic protein turnover, DELTA, which reveals localized plasticity changes during learning.
DELTA: A New Brain Mapping Tool
The foundational architecture of DELTA technology integrates two critical elements: advanced Janelia Fluor (JF) fluorescent dyes and bespoke HaloTag knock-in mouse models. This combination provides a powerful platform enabling the precise determination of protein lifespan in vivo through rigorously controlled pulse-tracking experimental paradigms. Methodologically, the process initiates with the systemic administration ('pulse') of a specific JF dye variant to the subject organism, facilitating covalent labeling of the target HaloTag-fusion protein cohort. Following a defined temporal interval, a second, spectrally distinct JF dye ('tracking') is introduced via perfusion. Subsequent quantitative analysis, specifically comparing the relative proportions of protein molecules labeled by the pulse versus the tracking dyes in conjunction with the known elapsed duration, permits the accurate calculation of the average protein population lifespan.
Fig.1 Measurement of protein turnover in vivo.1
The DELTA technology is able to measure the lifespan of proteins at high resolution on a brain-wide scale and can detect differences between different brain regions.
Fig.2 MeCP2–HT neuronal nuclei lifetime.1
The capacity to scrutinize protein turnover dynamics within living systems via pulse-tracking experiments, afforded by the DELTA methodology, promises profound new perspectives on the molecular architecture underpinning synaptic plasticity and learning phenomena. Significantly, DELTA permits concurrent deployment alongside indicators or modulators of neural activity. This integrated approach facilitates direct interrogation of the intricate relationship between neuronal activity states and the kinetics of protein turnover. The method's utility spans both healthy murine models and established animal paradigms of cerebral pathology. Consequently, DELTA offers a powerful means to delineate organ-wide proteomic alterations—correlating with adaptive and maladaptive processes—achieving this identification with exceptional clarity, efficiency, and granular detail.
Applications
DELTA technology brings new opportunities for neuroscience research.
- It can be utilized to study the turnover of more proteins in different physiological and pathological states and deepen the understanding of basic brain functions and disease mechanisms.
- Combining DELTA with other advanced technologies to explore the relationship between neural activity and protein turnover in multiple dimensions will provide a theoretical basis for tackling neurological diseases and developing new therapies.
Contact Us to Tailor the Best-Fit Solutions for Your Neuroscience Research
As a specialized Contract Research Organization operating within the neurobiology sector, we are fundamentally committed to furnishing clients with exceptionally efficient and professional services. Although Creative Biolabs does not offer the DELTA tool, our explicit aim is to catalyze significant breakthroughs in both foundational neuroscience and the intricate study of neurodegenerative disorders. Engaging our organization ensures partnership with a profoundly science-driven team. This dedicated group not only commands deep domain expertise but also possesses the critical operational agility requisite for addressing complex, non-standard experimental challenges and requirements.
Resources
Reference
- Mohar, Boaz, et al. "DELTA: a method for brain-wide measurement of synaptic protein turnover reveals localized plasticity during learning." Nature Neuroscience (2025): 1-10. Distributed under Open Access license CC BY 4.0, without modification.
- iNeuMab™ Anti-Integrin αvβ8 BBB Shuttle Antibody (NRZP-1222-ZP1218) (Cat#: NRZP-1222-ZP1218)
- iNeuMab™ Anti-TNFα BBB Shuttle Antibody (NRZP-1022-ZP4105) (Cat#: NRZP-1022-ZP4105)
- iNeuMab™ Anti-CD20 Antibody (NRP-0422-P1230) (Cat#: NRP-0422-P1230)
- iNeuMab™ Anti-CD32b Antibody (NRP-0422-P1803) (Cat#: NRP-0422-P1803)
- iNeuMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- iNeuMab™ Anti-Amyloid Beta 1-15 Antibody (NRP-0422-P867) (Cat#: NRP-0422-P867)
- iNeuMab™ Anti-ApoC3 BBB Shuttle Antibody (NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- iNeuMab™ Anti-TREM2 Antibody (NRP-0422-P792) (Cat#: NRP-0422-P792)
- iNeuMab™ Anti-SEZ6 Antibody (NRP-0422-P515) (Cat#: NRP-0422-P515)
- iNeu™ Human Sensory Neurons (Cat#: NCL-2103-P62)
- Mouse Microglia Cell Line BV-2, Immortalized (Cat#: NCL2110P153)
- iNeu™ Human Motor Neurons (Cat#: NCL-2103-P71)
- Mouse Midbrain Dopaminergic Neuron Cell MN9D (Cat#: NCL2110P059)
- Human Retinal Epithelial Cell ARPE-19 (Cat#: NCL2110P069)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Human Brain Astroblastoma U-87 MG (Cat#: NCL2110P117)
- Human Astrocytes, Immortalized (Cat#: NCL-2105-P182-AM)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- Mouse Glioma Cell Line GL261 (Cat#: NCL-2108P28)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)