Molecular and Cell Biology of Neurosciences
Recently, some substantial progress has been developed for the nervous system; however, understanding the principles and mechanisms underlying brain and nervous system function remains incomplete. Neuroscience is among the most rapidly expanding of biological disciplines proposes to tackle these enduring challenges. A major goal of neuroscience research is to provide society with basic information about nervous system function, which is critical for developing treatments for neurological and behavioral disorders. Neuroscience is inherently interdisciplinary and involved in many fields to find a way to explain the brain at multiple levels, from molecular to cellular systems. Molecular and cell biology are the newest and fastest-growing subdisciplines in neurosciences. The molecular and cell biology of neuroscience covers everything from genetics, cell biology, molecular biology to crystallography, etc. Researchers in these fields will find crucial insights into normal brain development and function.
Molecular Biology of Neurosciences
Different cells and parts communicate with each other in the brain via synapses, neurons, and glia for the overall information-processing machine. Understanding this machine will require a molecular approach, i.e., understanding the molecular rules determining neurons firing patterns and synaptic properties-their molecular logic. Molecular neuroscience could examine the biology of the nervous system with many strategies such as molecular biology, molecular genetics, protein chemistry, and related methodologies. Molecular neuroscientists focus on studying gene and genetics questions, emphasizing the neural basis of learning and behavior. These questions are under levels ranging from single neurons and synapses to behaving animals.
Cell Biology of Neurosciences
Cell biology research of neuroscience encompasses many areas of cell biology, developmental biology, and neurobiology, emphasizing fundamental cell signaling and communication problems. The most focus areas could be molecular mechanisms of neuronal signaling and synaptic plasticity, biomolecular recognition, and cell communication. In addition, it covers much research, including but not limited to:
- Molecular and cellular level developmental neuroscience.
- Neurophysiology of perception and cognition.
- Biophysics.
- Genetic analysis of neural circuits.
Fig.1 Illustration of neuronal shape and spines. (Südhof, 2017)
Molecular Neuroscience and Cell Biology Research
Neuroscientists use a variety of technologies ranging from genetics and cell biology to help understand how information in the brain is represented and changes over time to support complex behaviors. These include various aspects of the nervous system research, including but not limited to:
- Gene Expression and Regulation in Nervous System
- Intracellular Signalling Cascades in Nervous System
- Intracellular Transport and Cytoskeleton of Neurons
- Intracellular Regulation of Energy and Ions in Glia and Neurons
- Secretion and Vesicle Re-cycling
- Neurotoxins
These basic neuroscience research applications uncover the basic mechanisms of molecular and cellular function, considering their potential clinical implications for the treatment of neuropsychiatric diseases. For example, some genes and proteins that are broadly expressed have been described to link with neuropsychiatric diseases, suggesting that they function in a small subset of circuits and function for many signaling pathways. Studying these circuits is helpful to find the way for the novel therapeutic strategies of neuropsychiatric diseases in the future.
With long-term expertise in neuroscience, Creative Biolabs is the ideal partner to provide a wide range of leading technologies and products for our customers worldwide. Scientists here supports our customer in terms of technical expertise and custom services and products. Please do not hesitate to contact us for more detailed information.
Reference
- Südhof, T. C. Molecular neuroscience in the 21st century: a personal perspective. Neuron. 2017, 96(3), 536-541.
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P2275) (Cat#: NRP-0422-P2275)
- NeuroMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- NeuroMab™ Anti-Alpha Synuclein BBB Shuttle Antibody(NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- NeuroMab™ Rabbit Anti-LRRK2 Monoclonal Antibody (CBP1887) (Cat#: NAB-08-PZ735)
- NeuroMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- NeuroMab™ Anti-TREM2 Antibody(NRP-0422-P792) (Cat#: NRP-0422-P792)
- NeuroMab™ Anti-SEZ6 Antibody(NRP-0422-P517) (Cat#: NRP-0422-P517)
- NeuroMab™ Anti-ApoC3 BBB Shuttle Antibody(NRZP-1022-ZP3503) (Cat#: NRZP-1022-ZP3503)
- NeuroMab™ Anti-F-Spondin/SPON1 Antibody, Clone N24875P (CBP11839) (Cat#: NRZP-0822-ZP4740)
- NeuroMab™ Anti-EPHB2 Antibody(NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- iNeu™ Human Motor Neurons (Cat#: NCL-2103-P71)
- Mouse Microglia Cell Line BV-2, Immortalized (Cat#: NCL2110P153)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- Human Neurons Isolated from Cortex (Cat#: NCL-21P6-023)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- iNeu™ Human Oligodendrocyte Progenitor Cells (OPCs) (Cat#: NCL-2103-P49)
- Mouse Microglia N9 (Cat#: NCL2110P073)
- Mouse Retinal Ganglion Cell Line RGC-5 (Cat#: NCL2110P154)
- Human Retinal Epithelial Cell ARPE-19 (Cat#: NCL2110P069)
- iNeu™ Human Schwann Cell (Cat#: NCL-2103-P63)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- pAAV-syn-FLEX-jGCaMP8m-WPRE (Cat#: NTA-2106-P065)
- AAV2/9-hEF1a-DIO-mCherry-P2A-TetTox-WPRE-pA (Cat#: NTA-2012-ZP268)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- pAAV-EF1a-DIO-EGFP-WPRE (Cat#: NTA-2012AD-P285)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- rAAV-CAG-DIO-G-Flamp1 (Cat#: NRZP-0722-ZP719)
- AAV2/9-hSyn-Flpo-EGFP-WPRE-pA (Cat#: NTA-2012-ZP149)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)