Methods and Techniques of Neurosciences
Introduction to Neurosciences
In the last few years of studies, a growing body of neuroscience research has proven its significant role in analyzing the structure, molecular, and cell biology of the nervous system. It has become a multidisciplinary science that plays an important role in revealing the composition and behavior of the brain. To date, neuroscience has covered a wide range of areas of research, such as the molecular biology of nerve cells, the biology of the normal and abnormal brain, the molecular biology of emotional and cognitive behavior. As a result, unprecedented advances have also been made in techniques and methods based on neurosciences. Moreover, understanding the advantages and limitations of these new methods or techniques in cross-domain applications has become a research hotspot.
Fig.1 Advanced neuro-engineering and neurotechnology platforms that support diverse methods in neuroscience. (Vázquez-Guardado, 2020)
Methods and Techniques of Neurosciences
The speed of development of neuroscience is largely determined by the progress of its related methods and technologies. Nowadays, a wide variety of neuroscience-associated technologies have been generated for analyzing the function of the brain and nervous systems at different levels, such as animal, cellular, molecular, biochemical, single-cell, and others. In addition, a range of methods have been also developed and broadly used in many fields of neuroscience studies, including but not limited to:
Electrophysiological Methods
In recent years, electrophysiological methods have become the most popular strategies for the real-time detection of the electrical activity of neurons and the analysis of neuron-associated signaling in a variety of cell or tissue types. Typically, several electrodes of different sizes will be threaded through small holes drilled in the skull. The electrode head can touch the dura to record activity in the cerebral cortex or penetrate deep into brain tissue to record activity under a specific cortex. These methods allow data to be extracted and collected in a millisecond time frame. As a non-invasive technique, EGG has also been widely used in the diagnosis of various kinds of neurological disorders.
Imaging Methods
Currently, imaging methods have been considered as a powerful tool for studying mechanisms of action of brain development and aging. Normally, these methods can monitor brain activity without physical manipulation of the brain and thus cause no damage to the brain. Till now, imaging technologies can be classified into two main types: structural imaging and functional imaging. The former is used primarily to study the anatomical map of the brain, while the latter focuses on the biological processes of the nerves in the brain at that time. For example, in the brain imaging system, different structures of the brain, such as proteins and carbohydrates, fat, and saltwater, are visible. This information contributes to the study of brain representation in neuroscience research.
As a reliable global CRO, Creative Biolabs is committed and proud to be part of this rewarding challenge by offering its support to neuroscience-related methods and technologies development services for our clients. We are proud to partner with you on the journey of bringing novel solutions for neuroscience studies. If you are interested in our services, please contact us for more details.
Reference
- Vázquez-Guardado, A.; et al. Recent advances in neurotechnologies with broad potential for neuroscience research. Nature neuroscience. 2020, 23(12): 1522-1536.
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- NeuroMab™ Anti-GARP Antibody(NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- NeuroMab™ Anti-CD32b Antibody(NRP-0422-P1803) (Cat#: NRP-0422-P1803)
- NeuroMab™ Anti-Alpha Synuclein Antibody(NRP-0422-P614) (Cat#: NRP-0422-P614)
- NeuroMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- NeuroMab™ Rabbit Anti-LRRK2 Monoclonal Antibody (CBP1887) (Cat#: NAB-08-PZ735)
- NeuroMab™ Anti-EPHB2 Antibody(NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- NeuroMab™ Anti-Amyloid Beta 1-15 Antibody(NRP-0422-P867) (Cat#: NRP-0422-P867)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P2275) (Cat#: NRP-0422-P2275)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Human Brain Vascular Pericytes (Cat#: NCL-21P6-015)
- Human Glioblastoma Cell Line SF126 (Cat#: NCL-2108P35)
- iNeu™ Human Schwann Cell (Cat#: NCL-2103-P63)
- Human Neurons Isolated from Cortex (Cat#: NCL-21P6-023)
- Green Fluorescent Tau SH-SY5Y cell Line (Cat#: NCL2110P219)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- Mouse Midbrain Dopaminergic Neuron Cell MN9D (Cat#: NCL2110P059)
- Green Fluorescent BACE1 Cell Lines (Cat#: NCL2110P214)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- AAV-EF1a-mCherry-flex-dtA (Cat#: NRZP-0622-ZP616)
- Dextran-CYanine5.5 (Cat#: NTA-2011-ZP118)
- pAAV-syn-FLEX-jGCaMP8s-WPRE (Cat#: NTA-2106-P066)
- AAV2/9-hEF1a-DIO-mCherry-P2A-TetTox-WPRE-pA (Cat#: NTA-2012-ZP268)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- AAV2/2Retro-CAG-DIO-EGFP-2A-TetTox-pA [Neural Tracing] (Cat#: NTA-2012-ZP303)
- pAAV-EF1a-DIO-EGFP-WPRE (Cat#: NTA-2012AD-P285)
- pAAV-hSyn-DIO-XCaMP-R-WPRE (Cat#: NTA-2012AD-P508)
- Dextran, Cy5 Labeled, 2000 kDa (Cat#: NRZP-0722-ZP22)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)