Tel:
Fax:
Email:
Creative Biolabs

Neuronal Sparse Labeling Service

Neuron sparse labeling is a cutting-edge tool for neuroscience research that has significantly advanced our understanding of the intricate structure of the brain by visually resolving small neuronal subpopulations, allowing for direct measurement of neural structures. We offer a comprehensive suite of neuronal sparse labeling services, encompassing program design and result analysis. To learn more about our products and services, submit a project consultation, or request a quote, please contact us at your earliest convenience.

Neuronal Sparse Labeling Related Products

In addition to our services, we provide a comprehensive range of products to facilitate your neuronal sparse labeling testing.

Introduction

Fig 1 Sparse color marking.Fig.1 Multicolor sparse labeling.1, 3

The Neuron Sparse Labeling Service is a technology for precise and targeted labeling of specific cell populations. Its main purpose is to achieve high-brightness, high-resolution labeling of single neurons or specific neuron populations in neuroscience research. The core of the sparse labeling technology is that the labeling density is about 1% of the total cell count and the labeled neurons do not block each other, which is critical for visualizing synaptic structures and tracing long-distance axons or dendrites.

Neuronal Sparse Labeling Services

Services Descriptions
Tracer Virus This method employs viral vectors, including adeno-associated virus (AAV), semliki forest virus (SFV), and retrovirus (RV), to achieve sparse labeling through injection into specific brain regions. The AAV-Cre system, for instance, enables rapid and precise labeling, and when combined with the recombinase and Tet systems, it can be utilized to highlight specific cell populations during both early development and adult stages.
MORF-Based Sparse Imaging This method employs a combination of single nucleotide repeat frameshift (MORF) technology and a Cre-dependent fluorescent reporter system to achieve morphological labeling and stochastic expression of neurons. The sparse labeling frequencies achieved by MORF technology when crossed with different Cre driver lines range from 1% to 5%.
Golgi-Cox Staining A major advantage of Golgi-Cox staining is its randomness, typically only about 1-10% of neurons are stained, allowing a panoramic view of all parts of neurons, including cell bodies, axons, dendrites, and dendritic spines. This method is particularly useful for analyzing different types of neurons in the adult brain and can clearly show dendritic spines and cell bodies.
Dye Microinjections Dye microinjection combines chemical dyes with microinjection techniques to achieve sparse labeling of specific neurons, thereby avoiding over-labeling or background interference. Dye microinjection can be combined with a variety of other labeling methods such as Cre-dependent systems, tetracycline-inducible systems, etc. to achieve sparse labeling of specific neuronal types.

Case Study: Visualization of dendritic structure using MORF.

The incorporation of membrane-bound fGFP into the MORF approach facilitates the visualization and reconstruction of fine anatomical structures, revealing individually labeled neurons with better resolution than conventional Golgi staining.

Fig 2 The dendritic structure of neurons can be visualized using the MORF method.Fig.2 The MORF method can be used to visualize the dendritic structure of neurons.2, 3 (a-c) Images of single neurons labeled by the MORF method. (d-e) Striatal neurons labeled by MORF. (f) Striatal neurons labeled by the Golgi method.

Our sparse labeling service helps you reveal the fine structure of the brain through accurate and targeted labeling of specific neuronal populations, applicable to both single-cell analysis and whole-brain projection studies. We invite you to contact us to discuss your project plan in detail.

References

  1. Kohara, Keigo, and Masayoshi Okada. "Single-cell labeling strategies to dissect neuronal structures and local functions." Biology 12.2 (2023): 321.
  2. Lu, Xiao-Hong, and X. William Yang. "Genetically-directed sparse neuronal labeling in BAC transgenic mice through mononucleotide repeat frameshift." Scientific Reports 7.1 (2017): 43915.
  3. Distributed under Open Access license CC BY 4.0, without modification.
For Research Use Only. Not For Clinical Use.
In Vitro Services
Hot Products
Fill out this form for a quote Inquiry Form Send Inquiry
Inquiry Basket
compare

Send inquiry