Neuronal High Content Imaging (HCI) Assay Service
By incorporating high-content Assay, Creative Biolabs positions itself at the forefront of neuroscience research, offering clients powerful tools to advance their studies and accelerate the development of new therapies for neurological disorders. To learn more about our products and services, submit a project inquiry, or request pricing, please contact us.
Overview
High-content imaging (HCI) has revolutionized neuroscience research and drug discovery by combining automated microscopy with advanced image analysis. This powerful technique allows scientists to simultaneously visualize and quantify multiple cellular parameters, providing unprecedented insights into neuronal morphology, function, and pathology. In neuroscience, HCI has diverse applications, ranging from detailed analysis of neuronal morphology to the study of synaptic function, investigation of neuroinflammation, and modeling of neurodegenerative diseases.
Fig.1 Workflow for HCI and analysis.1
Applications in Neuroscience
HCI enables the collection of multiple parameters over long-time courses, providing researchers with highly sensitive, high-throughput screens that generate replicable results. In basic research applications in neuroscience, HCI can be used to observe the pathology of many diseases, including diseases such as Alzheimer's, Parkinson's, and other protein aggregate-based neurodegenerative diseases. Where HCI truly shines, however, is in preclinical drug screening. The automation of HCI allows for many compounds to be evaluated simultaneously. In neuroscience-specific applications, this enables researchers to, for example, test several iterations of a compound for its ability to inhibit aggregation or test less related compounds for their ability to promote neurite growth. This quickly provides insights that allow researchers to optimize their compound designs, identify useful classes of molecules, or select particular compounds for further research.
Advantages of HCI
HCI offers numerous advantages that make it indispensable in modern neuroscience:
Advantages | Descriptions |
Multi-parametric analysis | HCI allows for the simultaneous measurement of multiple cellular parameters, providing a comprehensive view of cellular responses and interactions. |
High-throughput capability | The automated nature of HCI enables rapid screening of large sample sets, significantly accelerating research and drug discovery processes. |
Quantitative data | HCI provides objective, quantitative measurements, reducing subjectivity in data interpretation and improving reproducibility. |
Time-lapse studies | HCI can capture cellular dynamics over time, enabling the study of processes like cell division, migration, and differentiation. |
Increased sensitivity | The technology can detect subtle cellular changes that might be missed by conventional methods. |
Reduced sample size | HCI often requires smaller sample volumes compared to traditional biochemical assays, conserving valuable research materials. |
Impact on Neuroscience Research
The high-throughput capability of HCI accelerates research and drug discovery processes, while its multi-parametric analysis provides a comprehensive view of cellular responses. By offering quantitative data and preserving spatial information within cells and tissues, HCI reduces subjectivity in data interpretation and enhances our understanding of cellular organization in the nervous system. These capabilities make HCI an indispensable technology in modern neuroscience, driving advancements in both basic research and the development of new therapies for neurological disorders.
Creative Biolabs, leveraging HCI technology, can offer cutting-edge services in neuroscience research and drug discovery. These services include custom assay development, high-throughput drug screening, neurotoxicity testing, and detailed mechanism of action studies. Please do not hesitate to contact us to discuss your project plans in more detail.
Reference
- Menduti, Giovanna, and Marina Boido. "Recent Advances in High-Content Imaging and Analysis in iPSC-Based Modelling of Neurodegenerative Diseases." International Journal of Molecular Sciences 24.19 (2023): 14689. Distributed under Open Access license CC BY 4.0, without modification.
- iNeuMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- NeuroMab™ Anti-TNFα BBB Shuttle Antibody(NRZP-1022-ZP4105) (Cat#: NRZP-1022-ZP4105)
- NeuroMab™ Anti-GARP Antibody(NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- NeuroMab™ Anti-SEZ6 Antibody(NRP-0422-P515) (Cat#: NRP-0422-P515)
- NeuroMab™ Anti-pTau Antibody(NRP-0422-P1719) (Cat#: NRP-0422-P1719)
- NeuroMab™ Anti-TREM2 BBB Shuttle Antibody(NRZP-1022-ZP4114) (Cat#: NRZP-1022-ZP4114)
- NeuroMab™ Anti-FGFR1 Antibody(NRP-0422-P1244) (Cat#: NRP-0422-P1244)
- NeuroMab™ Anti-Amyloid Beta 1-15 Antibody(NRP-0422-P867) (Cat#: NRP-0422-P867)
- NeuroMab™ Anti-GD2 Antibody(NRZP-1222-ZP767) (Cat#: NRZP-1222-ZP767)
- NeuroMab™ Anti-CD20 Antibody(NRP-0422-P1230) (Cat#: NRP-0422-P1230)
- Green Fluorescent Alpha-synuclein SH-SY5Y Cell Line (Cat#: NCL2110P209)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- Human Blood Brain Barrier Model (Cat#: NCL-2103-P187)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- Rat Glioma Cell Line C6 (Cat#: NCL2110P346)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Green Fluorescent Tau SH-SY5Y cell Line (Cat#: NCL2110P219)
- Human Astrocytes, Immortalized (Cat#: NCL-2105-P182-AM)
- Immortalized Human Cerebral Microvascular Endothelial Cells (Cat#: NCL-2108-P020)
- Mouse Microglia Cell Line BV-2, Immortalized (Cat#: NCL2110P153)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- pAAV-syn-FLEX-jGCaMP8m-WPRE (Cat#: NTA-2106-P065)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- rAAV-E-SARE-Cre-ERT2-PEST-WPRE-hGH polyA (Cat#: NTA-2010-TT342)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- Dextran, NHS Activated, 40 kDa (Cat#: NRZP-0722-ZP124)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- pAAV-hSyn-DIO-XCaMP-R-WPRE (Cat#: NTA-2012AD-P508)
- pAAV-syn-jGCaMP8m-WPRE (Cat#: NTA-2106-P062)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)