Gene-depends Neurological Disease Solutions
Gene therapy is designed to deliver genetic material to target cells to introduce copies of dysfunctional genes, trophic factors and modifier genes, or to silence the expression of harmful genes. Commonly used methods of gene therapy include antisense oligonucleotides, RNA interference, gene-editing technology, or adeno-associated virus-mediated gene silencing and delivery. Gene therapy has been a compelling but elusive treatment modality since birth, and it may offer therapeutic opportunities for more challenging and complex diseases.
The emergence of powerful new molecular tools and theories has broadened access to neurological disorders, as a leading company in the field of biology, Creative Biolabs provide our clients around the world with gene delivery, editing, modification, improvement and silencing services through advanced and comprehensive approaches, as well as design, selection and validation of your gene therapy methods.
Fig 1. Gene therapy strategies. (Amado, 2021)
Huntington's Disease (HD)
Therapeutics that target HTT DNA by modulating gene transcription or directly editing the HTT gene are currently being developed. Several promising therapeutic modalities have been proposed, including the use of zinc finger nucleases, transcription activator-like effector nucleases, or other RNA-guided bacterial nucleases. These approaches could develop common agents for all HD mutation carriers and require only one administration to achieve long-term treatment. But these approaches are invasive, the changes targeting brain regions cannot be reversed, and still requires longer and more in-depth design, assembly, selection and validation.
Amyotrophic Lateral Sclerosis (ALS)
ALS has historically presented unique challenges to gene therapy-based approaches, but with the combination and advancement of technology and theory, gene therapy experiments that target SOD1 mutation, C9 or f72 hexanucleotide repeat expansion, ATXN2 trinucleotide expansion and FUS mutation have been proposed and are in progress.
Spinal Muscular Atrophy
Spinal Muscular Atrophy (SMA) is a devastating neurodegenerative disease caused by progressive loss of motor neurons, and with advances in neuro-drug delivery theory, systemic delivery of self-complementary AAV9 has been demonstrated in mouse models to cross the blood-brain barrier and improves neuronal conduction disturbances caused by mutations in the SMN1 gene.
Fig 2. AAV virus and vector. (Hudry, 2019)
Alzheimer's Disease (AD)
Growing insights into AD and related neuropathology have led to the development of multiple virus-mediated gene transfer approaches for AD and promote the survival of cholinergic neurons. At present, therapeutic methods such as AAV2-NGF in the bilateral basal forebrain targeting Aβ, tau, BACE1, BDNF and APOE4 are also being developed.
Fig 3. APOE and other possible AD gene therapy targets. (Serrano-Pozo, 2021)
Parkinson's Disease (PD)
In recent years, AAV2-GAD, which aims to modulate the signaling process of GABAergic neurons, and AAV2-hAADC, which can increase dopamine production, have been validated in early clinical experiments. In addition, more viral-mediated or non-viral-mediated gene therapy methods are also under investigation, and may simultaneously or separately target PD potential therapeutic targets including AADC, TH, GCH, GDNF, ARTM, PSPN, etc.
Canavan Disease
Canavan Disease (CD) is a leukodystrophy caused by pathogenic variants in the aspartate acylase gene (ASPA). AAV2 therapy for ASPA is an evolution of earlier gene transfer studies that have been validated in Phase 1 studies. AAV2-ASPA was effective in reducing NAA concentrations and was well tolerated with minimal systemic inflammation.
Duchenne Muscular Dystrophy
Duchenne Muscular Dystrophy (DMD) is an X-linked degenerative muscular dystrophy that is caused by mutations in the DMD gene. There are already some FDA-approved antisense oligonucleotide therapies for this disease, but gene replacement therapy can provide a broader range of treatments. Miniaturized AAV vectors have been developed in recent years, which can achieve more efficient DMD gene-drug delivery efficiency with better pharmacokinetic profiles.
Other Diseases
In addition to some common and well-studied diseases, Creative Biolabs also provides one-stop modalities services for other types of neurological diseases, including,
- Neurodegenerative Disorders
- Neuromuscular Disorders
- Psychiatric Disorders
- Pain
- Rare Diseases
- Brain Tumors
- Ophthalmology
Successful gene therapy depends on the determination of the target, the effective delivery of the target and the effect of disease mitigation intervention. With years of research experience in the field of biotechnology and our advanced and cutting-edge theoretical basis and technology platform, Creative Biolabs now provides services of designing or validating delivery methods, carrier specificity and cargo efficacy for our clients all over the world. Please feel free to contact us with our specialist for further information.
References
- Amado, D.A.; Davidson, B.L. Gene therapy for ALS: A review. Molecular Therapy, 2021, 29(12): 3345.
- Hudry, E.; Vandenberghe, L.H. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron, 2019, 101: 839-862.
- Serrano-Pozo, A.; et al. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol, 2021, 20(1): 68-80.
- NeuroMab™ Anti-GD2 Antibody(NRZP-1222-ZP767) (Cat#: NRZP-1222-ZP767)
- iNeuMab™ Mouse Anti-LRP1 Monoclonal Antibody (CBP3363) (Cat#: NAB-0720-Z6479)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P2275) (Cat#: NRP-0422-P2275)
- NeuroMab™ Anti-CD20 Antibody(NRP-0422-P1230) (Cat#: NRP-0422-P1230)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1686) (Cat#: NRP-0422-P1686)
- NeuroMab™ Anti-CD32b Antibody(NRP-0422-P1803) (Cat#: NRP-0422-P1803)
- NeuroMab™ Anti-GARP Antibody(NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- NeuroMab™ Anti-EPHB2 Antibody(NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1760) (Cat#: NRP-0422-P1760)
- NeuroMab™ Anti-FGFR1 Antibody(NRP-0422-P1244) (Cat#: NRP-0422-P1244)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- Mouse Retinal Ganglion Cells (Cat#: NCL2110P145)
- Human Blood Brain Barrier Model (Cat#: NCL-2103-P187)
- Human Brain Astroblastoma U-87 MG (Cat#: NCL2110P117)
- Mouse Retinal Ganglion Cell Line RGC-5 (Cat#: NCL2110P154)
- Human Microglia Cell Line HMC3, Immortalized (Cat#: NCL-2108P38)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- iNeu™ Human Schwann Cell (Cat#: NCL-2103-P63)
- Green Fluorescent Tau SH-SY5Y cell Line (Cat#: NCL2110P219)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Dextran, Cy5 Labeled, 2000 kDa (Cat#: NRZP-0722-ZP22)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- pAAV-syn-FLEX-jGCaMP8s-WPRE (Cat#: NTA-2106-P066)
- pAAV-syn-jGCaMP8m-WPRE (Cat#: NTA-2106-P062)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- pAAV-hSyn-DIO-XCaMP-R-WPRE (Cat#: NTA-2012AD-P508)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- pAAV-syn-FLEX-jGCaMP8f-WPRE (Cat#: NTA-2106-P064)
- Dextran, NHS Activated, 40 kDa (Cat#: NRZP-0722-ZP124)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)