Tel:
Fax:
Email:
Creative Biolabs

Neurological Electrophysiology

Electrophysiology techniques provide a wealth of information regarding the molecular mechanisms that underlie the function and modulation of ion channels. Creative Biolabs is a contract research organization with over 10 years of expertise in our area of neurological electrophysiology expertise. We combine expertise, world-class facilities, and cutting-edge instrumentation to support companies involved in the research and development of products for neurological diseases.

Overview

Electrophysiology is the study of neural activity, including local field potentials, currents through ion channels, calcium spikes, backpropagation action potentials, and somatic action potentials, all of which can be measured on a millisecond scale. Electrophysiological techniques are historically the first to measure brain activity and remain the most accessible and most published techniques in basic (in both human and animal studies) and clinical neuroscience. Neuroscience drug discovery efforts are seeking to expand the assessment of synaptic function in brain agents in animal models of disease, as well as the subsequent reversal of synaptic defects after treatment with novel drug therapies. Several electrophysiology platforms have been evaluated and subsequently validated for use in safety pharmacology studies. This provides great hope for the discovery and development of new ion-channels targeting drugs.

Electrophysiology as a theoretical and methodological hub.Fig.1 Electrophysiology as a theoretical and methodological hub. (Cavanagh, 2019)

Advantages of Electrophysiology

  • The ability to directly assess neural activity versus indirect metabolic signals.
  • Recording can be done at multiple spatial scales, from a single cell to the entire brain.
  • Their millisecond temporal resolution.
  • Establishing the possibility of causal effects through simultaneous neural stimulation.
  • The growing availability, cost-effectiveness, and data quality of portable, ambulatory instruments.

Types of Electrophysiology

  • Manual Electrophysiology

A typical electrophysiological device includes a Faraday cage, a vibration isolation table, a microscope for imaging cells, a micro operator for electrodes, a low-noise amplifier, and some kind of drug infusion device for introducing solutions. This provides a good dynamic range for cell membrane voltage control (Vcmd) and is considered the gold standard for electrophysiological recording.

  • Automating Conventional Electrophysiology

The discovery of high-resistance giga-ohm patch-clamp recordings, accompanied by advances in micromanipulation and low-noise amplifiers, opened the scientific floodgates to the world of ion channels and bioelectricity. Even if a well-performing cell line has been identified and validated on an automated platform, good and healthy cells are key to the success of automated electrophysiology.

Neurological Electrophysiology Technology at Creative Biolabs

The available methodologies for the recording of neural activity include: (a) intracellular recordings and stimulation by sharp or patch electrodes, (b) extracellular recordings and stimulation by substrate-integrated microelectrode arrays (MEAs), (c) optical imaging and stimulation techniques for exogenous fluorescent indicators or gene-encoded molecular probes, and (d) other methods.

Creative Biolabs is an outstanding, independent USA company offering quality products and first-class customer service to leading pharma, biotech, contract research organizations, and universities worldwide. Our research services focus on the in vitro and in vivo electrophysiology assay in a range of advanced technologies to drive your research forward. Experience across these service areas also enables us to work with you. Please feel free to contact us for more detail about your projects.

Reference

  1. Cavanagh, J,F. Electrophysiology as a theoretical and methodological hub for the neural sciences. Psychophysiology. 2019, 56(2): e13314.
For Research Use Only. Not For Clinical Use.
Technology
Hot Products
Fill out this form for a quote Inquiry Form Send Inquiry
webinar

The Spectrum of Stem Cell-Based Neuronal Models and Their Fit for Purpose

2:00 PM–3:00 PM EST, December 12, 2024

REGISTER NOW
Inquiry Basket
compare

Send inquiry