Tel:
Fax:
Email:
Creative Biolabs

Drosophila Models

Drosophila melanogaster, commonly known as the fruit fly, has emerged as a powerful model organism for studying various aspects of neuroscience. At Creative Biolabs, we recognize the significance of Drosophila models in advancing our knowledge of the brain and offer a comprehensive range of services and resources to support neuroscience research.

Why Drosophila Models?

Drosophila offers several advantages that make it an ideal choice for investigating neural function and disease mechanisms.

  • Genetic Tractability: The fruit fly's genome has been extensively characterized, allowing for precise genetic manipulations. Researchers can easily introduce targeted genetic modifications, such as gene knockouts, knock-ins, or overexpression, to study specific genes or pathways involved in neural development and function.
  • Conservation of Neurobiological Mechanisms: Despite its evolutionary distance from mammals, Drosophila shares remarkable similarities with humans in terms of basic cellular processes, neural circuitry, and behavioral patterns. Many fundamental neurobiological mechanisms are conserved across species, enabling insights gained from Drosophila studies to be applied to higher organisms, including humans.
  • Cost-Effective and Rapid Research: Drosophila has a short lifecycle and a large number of offspring, allowing for rapid and cost-effective experimentation. Researchers can perform high-throughput screens and conduct experiments on a large scale, accelerating the pace of discovery and enabling the identification of key genes and pathways involved in neurological disorders.

Our Drosophila Models Development Service

At Creative Biolabs, we offer a comprehensive Drosophila models development service tailored to meet the diverse needs of our clients in the neuroscience field. Our team of experienced scientists and technicians utilizes cutting-edge techniques such as CRISPR/Cas9 gene editing, transgenesis, and RNA interference (RNAi) to generate novel Drosophila models with precise genetic modifications. Leveraging advanced genetic engineering techniques, we can provide access to a diverse array of Drosophila models, including:

  • Transgenic Drosophila Models
  • Knockdown/knockout Drosophila Models
  • Neurological disease-specific Drosophila Models.

Our Drosophila model development service encompasses various stages, starting from experimental design and strategy development to model generation and validation. Throughout the process, we adhere to stringent quality control measures and strict ethical guidelines to guarantee the integrity and scientific rigor of our models.

Our Drosophila Model-based Assays

Creative Biolabs offers a wide range of Drosophila model-based assays, which serve as invaluable tools for investigating neurodegenerative diseases, neurodevelopmental disorders, neurophysiology, and neuropharmacology.

Using Drosophila models, we can conduct behavioral assays to assess various aspects of neural function, including locomotor activity, learning and memory, sensory perception, aggression, and sleep patterns. These assays provide quantitative and qualitative data, enabling us to analyze the effects of genetic modifications or therapeutic interventions on behavior and neural circuitry. By leveraging the unique genetic tractability of Drosophila, we can also perform high-throughput drug screening assays to identify potential compounds that modulate disease-related phenotypes.

Drosophila model based drug discovery pipeline for ND therapies.Fig.1 Drosophila model based drug discovery pipeline for ND therapies. (Tello, 2022)

Please feel free to contact us for more about our Drosophila Models related services.

Reference

  1. Tello, Judith A., et al. "Animal models of neurodegenerative disease: Recent advances in fly highlight innovative approaches to drug discovery." Frontiers in molecular neuroscience 15 (2022).
For Research Use Only. Not For Clinical Use.
Service
Hot Products
Fill out this form for a quote Inquiry Form Send Inquiry
webinar

The Spectrum of Stem Cell-Based Neuronal Models and Their Fit for Purpose

2:00 PM–3:00 PM EST, December 12, 2024

REGISTER NOW
Inquiry Basket
compare

Send inquiry