Microglia Phagocytosis Assay Service
Microglia are the resident macrophages in the central nervous system (CNS). One of their most important characteristics is their ability to phagocytose, which plays a pivotal role in maintaining brain homeostasis and responding to neurodegenerative diseases. In vitro microglial phagocytosis assays assist in understanding how microglia maintain tissue homeostasis in healthy and disease states. At Creative Biolabs, our scientists are prepared to develop a custom research plan to meet your specific requirements. To determine which phagocytosis assay is best suited to your experiment, to learn more about our products and services, to submit a project request, or to request a quote, please contact us at your earliest convenience.
Microglial Platform Concept
Our optimized physiological culture method accurately reproduces the characteristics and morphology of microglia in vivo. Additionally, our laboratory is equipped with a live cell imaging device designed to effectively capture the cellular changes that occur throughout the life cycle of microglia, enabling long-term measurements and real-time cell visualization.
Microglia Phagocytosis Assays Methodology
- Fluorescence-labeled microspheres or bioparticles
Phagocytosis experiments typically utilize fluorescently labeled microspheres or bioparticles as phagocytic targets. In a typical assay, microglia are treated, then phagocytic targets are diluted and introduced to microglial culture medium, after which phagocytic activity is evaluated through immunofluorescence staining or flow cytometry.
- pH-dependent fluorescent conjugate
We use a range of pH-dependent fluorescent conjugates, which are pH-sensitive dye conjugates that fluoresce brightly in phagosomes and can label proteins, beta-amyloid (1-42), α-synuclein, and dead cells, making the assay highly customizable. The fluorescence of the assay increases as the pH decreases. No washing or quenching steps are required, and no compensation for environmental factors is needed, ensuring faster and more accurate results.
Case study: Human Aβ1-42 pH-dependent fluorescent conjugate
Microglia play a key role in Alzheimer's disease (AD) pathology by clearing toxic protein aggregates from the brain by engulfing amyloid. Therefore, the use of pH-dependent fluorescent conjugates of human Aβ1-42 can provide a deeper understanding of how these cells respond and process material in these pathological states.
Fig.1 By conjugating a pH-sensitive dye to the N-terminus of human Aβ1-42 peptide, a pH-dependent fluorescent Aβ1-42 conjugate was synthesized.1 Increased fluorescence was observed at acidic pH values from ~5.0 to ~2.0, covering the pH range of acidic organelles within the cell.
At Creative Biolabs, our microglial phagocytosis assay service employs cutting-edge technology to efficiently and gently isolate microglia and analyze microglial phagosomes, elucidating their pivotal roles in brain health and disease. This service offers invaluable support for neuroscience research. We invite you to contact us to discuss your project plans in detail.
Reference
- Prakash, Priya, et al. "Monitoring phagocytic uptake of amyloid β into glial cell lysosomes in real time." Chemical Science 12.32 (2021): 10901-10918. Distributed under Open Access license CC BY 3.0, without modification.
- NeuroMab™ Anti-Amyloid Beta 1-15 Antibody(NRP-0422-P867) (Cat#: NRP-0422-P867)
- iNeuMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- NeuroMab™ Anti-TREM2 Antibody(NRP-0422-P792) (Cat#: NRP-0422-P792)
- NeuroMab™ Anti-TREM2 BBB Shuttle Antibody(NRZP-1022-ZP4114) (Cat#: NRZP-1022-ZP4114)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1684) (Cat#: NRP-0422-P1684)
- iNeuMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- iNeuMab™ Rabbit Anti-LRRK2 Monoclonal Antibody (CBP1887) (Cat#: NAB-08-PZ735)
- iNeuMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- NeuroMab™ Anti-GD2 Antibody(NRZP-1222-ZP767) (Cat#: NRZP-1222-ZP767)
- Green Fluorescent Alpha-synuclein SH-SY5Y Cell Line (Cat#: NCL2110P209)
- Rat Glioma Cell Line C6 (Cat#: NCL2110P346)
- Immortalized Human Cerebral Microvascular Endothelial Cells (Cat#: NCL-2108-P020)
- Mouse Microglia from C57BL/6 (Cat#: NCL-21P6-082)
- Mouse Midbrain Dopaminergic Neuron Cell MN9D (Cat#: NCL2110P059)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- iNeu™ Human Schwann Cell (Cat#: NCL-2103-P63)
- Human Neurons Isolated from Cortex (Cat#: NCL-21P6-023)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- pAAV-hSyn-DIO-XCaMP-R-WPRE (Cat#: NTA-2012AD-P508)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- Dextran, Cy5 Labeled, 2000 kDa (Cat#: NRZP-0722-ZP22)
- rAAV-E-SARE-Cre-ERT2-PEST-WPRE-hGH polyA (Cat#: NTA-2010-TT342)
- pAAV-syn-jGCaMP8m-WPRE (Cat#: NTA-2106-P062)
- Dextran, NHS Activated, 40 kDa (Cat#: NRZP-0722-ZP124)
- pAAV-syn-FLEX-jGCaMP8m-WPRE (Cat#: NTA-2106-P065)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)