Human iPSC Derived Neuronal Cell Culture Models
Creative Biolabs has long-term devoted to the development and application of neuronal models for neuroscience research. Based on our years of research, now we can provide novel human iPSC derived neuronal cell culture models for our clients all over the world.
Introduction of iPSC Derived Neuronal Cell Culture Models
Induced pluripotent stem cells (iPSCs) are adult pluripotent stem cells generated from somatic cells by introducing reprogramming factors. With the advent and development of iPSC technology and CRISPR/Cas9 gene editing, pluripotent stem cells as well as their differentiated progeny have served as an excellent tool for the research of human neural development, disease modeling, and drug discovery.
There are a series of differentiation protocols that exist for the generation of neural cell types from human iPSCs. The standard steps include the formation of the neuroepithelium, specialization of neural stem cells, and further differentiation into neural progenitors and other mature cell types. This differentiation process is achieved by adding specific cell culture media, growth factors, and small molecule inhibitors to the culture medium. Among them, 2D models are relatively simple and easy to characterize, while 3D models have more complex functions and can adequately simulate developmental processes.
Features of iPSC Derived Neuronal Cell Culture Models
Human iPSC derived neuronal cell culture models provide the only practical way the research live human neurons' development and functions. Most neuropsychiatric disorders have a strong genetic component, while hiPSCs can capture the genetic diversity of patient populations and are better suited for studying how specific sets of mutations contribute to disease. Compared to animal models, iPSC in vitro models avoid potential problems in translating research findings into human treatments.
Fig.1 Generating stem cell derived disease models and complex neuronal cultures based on patient iPSCs requires careful and extensive validation. (Tomov, 2021)
iPSC Derived Neuronal Cell Culture Models for Diseases Research
Human iPSC-derived neuronal cell culture models can simulate human CNS-related diseases in a petri dish and can also be used for drug discovery efforts. The earliest example of a neurological disease model using iPSCs involves neural crest precursors from patients with familial autonomic dysfunction. Till now, human iPSC derived neuronal cell culture models have been used in more than 60 studies for Alzheimer's disease (AD) in vitro research. The use of iPSC-based models in combination with other methods, such as medical imaging and biomedical markers, enables a better understanding of the biological, genetic, and pathological similarities of neurological-related diseases.
Creative Biolabs has been a long-term expert in the field of neuroscience research. We are pleased to use our extensive experience and advanced platform to offer the best service and the most qualified products to satisfy each demand from our customers. If you are interested in our products and services, please do not hesitate to contact us for more details.
Reference
- Tomov, M.L.; et al. Resolving cell state in iPSC-derived human neural samples with multiplexed fluorescence imaging. Communications biology. 2021, 4(1): 1-9.
- NeuroMab™ Anti-Amyloid Beta 1-15 Antibody(NRP-0422-P867) (Cat#: NRP-0422-P867)
- NeuroMab™ Anti-CD20 Antibody(NRP-0422-P1230) (Cat#: NRP-0422-P1230)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P2293) (Cat#: NRP-0422-P2293)
- NeuroMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- NeuroMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- NeuroMab™ Rabbit Anti-LRRK2 Monoclonal Antibody (CBP1887) (Cat#: NAB-08-PZ735)
- NeuroMab™ Anti-FGFR1 Antibody(NRP-0422-P1244) (Cat#: NRP-0422-P1244)
- NeuroMab™ Anti-ApoC3 BBB Shuttle Antibody(NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- NeuroMab™ Anti-Alpha Synuclein BBB Shuttle Antibody(NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- Rat Immortalized Retinal Muller Cell Line rMC-1 (Cat#: NCL-2106-S93)
- Mouse Microglia Cell Line BV-2, Immortalized (Cat#: NCL2110P153)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- Green Fluorescent BACE1 Cell Lines (Cat#: NCL2110P214)
- iNeu™ Human Neural Stem Cell Line (Cat#: NCL200552ZP)
- Human Brain Astroblastoma U-87 MG (Cat#: NCL2110P117)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- Green Fluorescent Alpha-synuclein SH-SY5Y Cell Line (Cat#: NCL2110P209)
- iNeu™ Human Schwann Cell (Cat#: NCL-2103-P63)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- AAV2/9-hEF1a-DIO-mCherry-P2A-TetTox-WPRE-pA (Cat#: NTA-2012-ZP268)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- AAV-mDLX-CRE-tdTomato (Cat#: NRZP-0622-ZP721)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- pAAV-syn-FLEX-jGCaMP8m-WPRE (Cat#: NTA-2106-P065)
- Dextran, NHS Activated, 40 kDa (Cat#: NRZP-0722-ZP124)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- AAV2/2Retro-CAG-DIO-EGFP-2A-TetTox-pA [Neural Tracing] (Cat#: NTA-2012-ZP303)
- pAAV-EF1a-DIO-EGFP-WPRE (Cat#: NTA-2012AD-P285)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)