Electrolocation
In a sense, electrolocation is similar to echolocation. Animals assess the environment by actively sending out signals and monitoring feedback instead of passively using external energy sources such as sunlight. Therefore, electrolocation animals can work in the dark, and they gain this advantage by constantly consuming energy on signal transmission. When processing sensory information, the electrical positioning system must distinguish the feedback related to its signal from the interference sensation caused by other animal signals. This special situation raises many challenging questions for behavioral and neurophysiological research.
Working Principles of Electrolocation
- Model animal
- Working principles
The behavioral output of the electric fish appears in the form of electrical organ discharge, and the stimulus input appears in the form of electrical impulses. The simplicity of the two makes the electric fish an excellent model for neurobehavioral research.
During the active discharge process, the electric fish pass through a special electroreceptor in the tail for a short time discharge, which is distributed on the precursor surface to monitor the local transcutaneous current related to electrical organ discharge (EOD). An object with a different impedance than the surrounding water will distort the electric field, thereby changing the pattern of transcutaneous current intensity, most notably in the surface area closest to the object. By monitoring local changes in electroreceptor activity, they can perceive the surrounding environment to discover any food sources and potential hazards nearby.
Fig.1 Active electrolocation and passive electrolocation in electric fish. (Yilmaz, 2020)
Application of Electrolocation
- Sensory motor behavior analysis
Through the electrolocation imaging of the inductive transverse lobe neurons in the brain under static conditions of the weakly electric fish, it was found that animals can approach new objects spontaneously. The change of sensory motor behavior contributes to the formation of sensory input, thereby generating in-depth information. Motor control can be an active part of sensory learning, so a better understanding of the neurons that guide sensory learning may lead to a better understanding of sensory motor integration, behavior changes, and general learning.
Fig.2 Changes in electrolocation image and motor behavior. (Pedraja, 2020)
- Coronary plaque imaging and analysis
Coronary artery disease is characterized by atherosclerotic plaques growing on the walls of blood vessels, which inhibit blood flow and cause hypoxia in the heart muscle. Preventive assessment focuses on the key size of structural plaque parameters to identify high-risk plaques called thin cap fibroids. The catheter system is constructed based on the principle of active electrolocation of weakly electric fish, and the electrical image evoked by the plaque is projected on the surface of the catheter. Synthetic plaques with critical cap thickness have been detected and localized in porcine coronary arteries, opening a new way for the understanding of human nervous system-related diseases.
Recent studies have shown that behavior-related sensory information can be generated from strong patterns of sensory motor behavior (electric fish use sensory motion to generate electrolocation), and this behavioral control of sensory input may help improve neuronal stimulation detection and coding. The further development of the biomimetic active electrolocation catheter system makes the application of electrolocation technology in the field of neuromedical imaging more extensive. Understanding the specific role of electrical signals in these sensory and neuromodulation processes through chemical methods may have strong guiding significance and therapeutic applications for human neurological diseases.
Creative Biolabs is a leader in the neuroscience electrochemical industry. Our products can provide you with markings and detections in the electrical localization process, helping you to solve the mystery of neurological research. Please feel free to contact us if you are interested or have any questions.
References
- Pedraja, F.; et al. Task-Related Sensorimotor Adjustments Increase the Sensory Range in Electrolocation. Journal of Neuroscience. 2020, 40(5): 1097-1109.
- Yilmaz, S.; Sen, S. Electric fish optimization: a new heuristic algorithm inspired by electrolocation. Neural Computing and Applications. 2020, 32(15): 11543-11578.
- NeuroMab™ Anti-SEZ6 Antibody(NRP-0422-P517) (Cat#: NRP-0422-P517)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- NeuroMab™ Anti-FGFR1 Antibody(NRP-0422-P1244) (Cat#: NRP-0422-P1244)
- iNeuMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- iNeuMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- NeuroMab™ Anti-GARP Antibody(NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- NeuroMab™ Anti-EPHB2 Antibody(NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- NeuroMab™ Anti-CD32b Antibody(NRP-0422-P1803) (Cat#: NRP-0422-P1803)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- Green Fluorescent Alpha-synuclein SH-SY5Y Cell Line (Cat#: NCL2110P209)
- Mouse Retinal Ganglion Cell Line RGC-5 (Cat#: NCL2110P154)
- Human Retinal Epithelial Cell ARPE-19 (Cat#: NCL2110P069)
- Mouse Retinal Ganglion Cells (Cat#: NCL2110P145)
- Mouse Microglia N9 (Cat#: NCL2110P073)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- Green Fluorescent BACE1 Cell Lines (Cat#: NCL2110P214)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- pAAV-syn-jGCaMP8m-WPRE (Cat#: NTA-2106-P062)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- pAAV-syn-FLEX-jGCaMP8s-WPRE (Cat#: NTA-2106-P066)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Dextran, Cy5 Labeled, 2000 kDa (Cat#: NRZP-0722-ZP22)
- rAAV-E-SARE-Cre-ERT2-PEST-WPRE-hGH polyA (Cat#: NTA-2010-TT342)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- Dextran, NHS Activated, 40 kDa (Cat#: NRZP-0722-ZP124)
- pAAV-syn-FLEX-jGCaMP8f-WPRE (Cat#: NTA-2106-P064)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)