Fluorescent Biosensor based Neuropeptide Imaging
Neuropeptides are small protein-like molecules that play crucial roles in neural communication and modulation. The ability to accurately detect and visualize neuropeptides in living systems is essential for understanding their dynamics and functions. Creative Biolabs proudly presents our cutting-edge service in Fluorescent Biosensor based Neuropeptide Imaging. This groundbreaking technology enables precise and real-time visualization of neuropeptides, unlocking new possibilities in neuroscience research.
Neuropeptides
Neuropeptides serve as critical mediators of neuronal communication and are involved in numerous physiological processes such as pain regulation, stress response, and appetite control. Understanding their distribution, release patterns, and interactions within the central nervous system is crucial for unraveling the complex mechanisms underlying brain function and dysfunction.
Table 1. Neuropeptides in the nervous and endocrine systems. (Hook, 2008)
Custom Fluorescent Biosensor Development
Creative Biolabs offers a comprehensive and customizable Fluorescent Biosensor Development Service specifically tailored for neuropeptide imaging. Our team of expert scientists leverages state-of-the-art technologies to engineer highly sensitive and specific biosensors capable of detecting and monitoring neuropeptide activity in real-time. By combining the power of fluorescence imaging with the precision of biosensor technology, our service empowers researchers with invaluable tools for unraveling the mysteries of neuropeptide signaling.
Our service encompasses the following steps:
Applications
By enabling the visualization and monitoring of neuropeptides in vivo, our biosensors offer unprecedented insights into neuropeptide signaling and its impact on brain function. Some key applications include:
1. Mapping Neuropeptide Release Patterns
Fluorescent biosensors allow researchers to map the spatiotemporal patterns of neuropeptide release in specific brain regions. By monitoring the fluorescence changes in real-time, researchers can visualize the dynamics of neuropeptide signaling during different physiological and pathological conditions. This information helps in identifying the brain regions and neural circuits involved in specific behaviors or disease states.
2. Studying Neuropeptide-Driven Behavior
Neuropeptides play a crucial role in regulating behavior. The custom Fluorescent Biosensors developed by Creative Biolabs enable researchers to investigate the relationship between neuropeptide release and behavioral responses. By imaging neuropeptide dynamics in freely behaving animals, researchers can decipher the role of specific neuropeptides in social interactions, feeding behavior, aggression, and other complex behaviors.
3. Evaluating Neuropeptide Therapeutics
Neuropeptides hold great therapeutic potential for various neurological and psychiatric disorders. By utilizing Fluorescent Biosensors, researchers can assess the effectiveness of neuropeptide-based therapeutics in real-time. The biosensors allow for the visualization of neuropeptide receptors.
Creative Biolabs also provide brain microdialysis service with real-time measurements of neuropeptides, allowing researchers to monitor neuropeptide release over extended periods. We offer comprehensive services in the development and optimization of custom microdialysis probes and the analysis of dialysate samples.
Please feel free to contact us for more about our animal models related services.
Reference
- Hook, Vivian V. H. et al. "Proteases for processing proneuropeptides into peptide neurotransmitters and hormones." Annual review of pharmacology and toxicology 48 (2008): 393-423.
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P2293) (Cat#: NRP-0422-P2293)
- iNeuMab™ Anti-EPHB2 Antibody (NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- iNeuMab™ Anti-Alpha Synuclein BBB Shuttle Antibody (NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- iNeuMab™ Anti-GD2 Antibody (NRZP-1222-ZP767) (Cat#: NRZP-1222-ZP767)
- iNeuMab™ Anti-ApoC3 BBB Shuttle Antibody (NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- iNeuMab™ Anti-TREM2 BBB Shuttle Antibody (NRZP-1022-ZP4114) (Cat#: NRZP-1022-ZP4114)
- iNeuMab™ Anti-CD20 Antibody (NRP-0422-P1230) (Cat#: NRP-0422-P1230)
- iNeuMab™ Anti-ApoC3 BBB Shuttle Antibody (NRZP-1022-ZP3503) (Cat#: NRZP-1022-ZP3503)
- iNeuMab™ Anti-Integrin αvβ8 BBB Shuttle Antibody (NRZP-1222-ZP1218) (Cat#: NRZP-1222-ZP1218)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Green Fluorescent Alpha-synuclein Cell Line (Cat#: NCL2110P209)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- Human Neurons Isolated from Cortex (Cat#: NCL-21P6-023)
- Mouse Glioma Cell Line GL261 (Cat#: NCL-2108P28)
- Mouse Retinal Ganglion Cells (Cat#: NCL2110P145)
- Mouse Microglia Cell Line BV-2, Immortalized (Cat#: NCL2110P153)
- Human Microglia Cell Line HMC3, Immortalized (Cat#: NCL-2108P38)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- Mouse Microglia from C57BL/6 (Cat#: NCL-21P6-082)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)