Transgenic Models of Neurodegenerative Disease
The increasing incidence of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) have become one of the most challenging health problems for aging humans. Using genetically modified animal models of neurodegenerative diseases to study pathogenesis, prognosis, diagnosis, treatment, and prevention is one of the main methods in current biomedical.
Neurodegenerative Transgenic Animal Models in Mice
Neurodegenerative diseases, including motor neuron disease (MND), AD, PD, prion disease, Huntington's disease (HD) and cerebellar ataxia. It is autosomal dominant and age-related, including specific gene mutations disease. Due to the development of in vitro systems and advances in transgenic technology, researchers have created transgenic animal models of these diseases. At present, genetically modified models of neurodegenerative diseases are the most common in mice.
Table 1. Transgenic mouse models for neurodegenerative diseases.
Disease types | Clinical features | Gene | Transgenic Models | Results |
Amyotrophic Lateral Sclerosis (ALS) |
Pathological paralysis, muscle atrophy, spasm, neuron disease. |
SOD1 | SOD1 transgenic mice | The transgenic mice showed progressive weakness and muscle atrophy. The electromyogram showed that it was consistent with MND, the level and activity of SOD1 protein increased, and the structure of a variety of motor neurons was abnormal. |
Alzheimer's disease (AD) |
Senile plaques, neurofibrillary tangles, hippocampal and cortical neurodegeneration. |
APP, PSEN1 |
APP transgenic mice | Diffuse and dense deposits can be seen in the hippocampus, corpus callosum, and cerebral cortex. These deposits are related to twisted neurites, astrocytes and microglia. |
Prion diseases |
Ataxia and/or dementia, spongy, degeneration, glial cell proliferation. |
PrP | Mo/HuPrP-P102L transgenic mice | Transgenic mice showed moderate spongiform degeneration and severe gliosis. |
Trinucleotide repeat diseases |
Autosomal dominant disease, degeneration of specific neuron population. |
X25 | SCA-I transgenic mice | Several lines of mice with transgenes encoding expanded repeats develop ataxia and degeneration of Purkinje cells. |
Parkinson’s disease (PD) | Progressive loss of dopamine (DA) neurons in the substantia nigrpars compacta (SN) and the presence of misfolded α-synuclein in Lewy bodies and neurites throughout the nervous system. | Parkin (PARK2) | α-synuclein transgenic mice | The transgenic model showed strong non-dopaminergic defects and motor dysfunction. |
Huntington's disease (HD) | Protein misfolding and aggregation and age-dependent neurodegeneration. | Htt | R6/2 transgenic mice | The gene-deficient mice showed severe motor deficits and early death. |
The transgenic mouse model is the most used mammalian genetic model because of its high efficiency, economy, and ease of operation. Although the phenotype and neuronal pathology of various transgenic mouse models in neurodegenerative diseases have been extensively studied, none of them exhibits as strong neurodegeneration as the human brain.

Neurodegenerative Transgenic Animal Models in Other Primates
Large-scale transgenic animal models have been established in non-human primates, such as rhesus monkeys, pigs, sheep, and chickens. Due to the genetic, anatomical, physiology, pathological and neurological similarities between large mammals and humans, large-scale transgenic animal models are highly attractive in neurodegenerative diseases and can bridge the gap between rodents and humans in preclinical research.
No matter how perfect an animal model is, it cannot completely replicate the phenotype of human neurodegenerative diseases. Significant progress has been made in using transgenic methods to simulate human neurodegenerative diseases in animals and transform them into human targeted therapy. These transgenic models provide basic biological knowledge and disease phenotypes related to human conditions and provide important information in elucidating the pathogenic mechanism of diseases and developing treatment strategies.
Creative Biolabs has advanced technology and mature methods in the research of neuroscience problems. We have a full line of off-the-shelf and customized products for different neurosecretion research. Please feel free to contact us if you are interested or have any questions.
References
- Dawson, T.M.; et al. Animal models of neurodegenerative diseases. Nature neuroscience. 2018, 21(10): 1370-1379.
- Chang, R.; et al. Transgenic animal models for study of the pathogenesis of Huntington’s disease and therapy. Drug design, development and therapy. 2015, 9: 2179.
- NeuroMab™ Anti-Alpha Synuclein Antibody(NRP-0422-P614) (Cat#: NRP-0422-P614)
- NeuroMab™ Anti-ApoC3 BBB Shuttle Antibody(NRZP-1022-ZP3503) (Cat#: NRZP-1022-ZP3503)
- NeuroMab™ Anti-Alpha Synuclein BBB Shuttle Antibody(NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- NeuroMab™ Anti-Amyloid Beta 1-15 Antibody(NRP-0422-P867) (Cat#: NRP-0422-P867)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P2275) (Cat#: NRP-0422-P2275)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P2293) (Cat#: NRP-0422-P2293)
- NeuroMab™ Anti-ApoC3 BBB Shuttle Antibody(NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- NeuroMab™ Anti-GARP Antibody(NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- NeuroMab™ Anti-SEZ6 Antibody(NRP-0422-P517) (Cat#: NRP-0422-P517)
- Mouse Microglia from C57BL/6 (Cat#: NCL-21P6-082)
- Rat Glioma Cell Line C6 (Cat#: NCL2110P346)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Human Brain Astroblastoma U-87 MG (Cat#: NCL2110P117)
- iNeu™ Human Sensory Neurons (Cat#: NCL-2103-P62)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- pAAV-syn-FLEX-jGCaMP8f-WPRE (Cat#: NTA-2106-P064)
- pAAV-syn-FLEX-jGCaMP8s-WPRE (Cat#: NTA-2106-P066)
- rAAV-E-SARE-Cre-ERT2-PEST-WPRE-hGH polyA (Cat#: NTA-2010-TT342)
- pAAV-hSyn-DIO-XCaMP-R-WPRE (Cat#: NTA-2012AD-P508)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- Dextran, Cy5 Labeled, 2000 kDa (Cat#: NRZP-0722-ZP22)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)