Assessment of Executive Function and Higher-Order Cognition in Animals
Introduction to Executive Function and Cognition
Executive function (EF) is a complex construct that reflects multiple higher-order cognitive processes such as planning, updating, inhibiting, and set-shifting, and it exhibits significant age-related differences. Some scholars believe that EF dysfunction is a basic feature of human cognitive aging. Comparative studies have clarified that the unique characteristics of human cognition and brain aging are the same as those of other primates. Therefore, it is important to determine the extent to which other non-human primates (NHP) age-related EF and related neural matrix decline.
Executive Function and Higher-Order Cognition in Animals
Cognitive aging research used several NHP, based on their unique characteristics with humans, such as kinship (chimpanzee, macaque), short life span (squirrel lemur, marmoset), or the possibility of specific brain pathologies (chimpanzee, Grey mouse lemur). It was found that in all NHP, a significant decrease in EF was positively correlated with cognitive function.
Fig.1 VBM analysis of age-related decline in grey matter volume in the chimpanzee brain. (Lacreuse, 2020)
In addition, rodents mimic the EF of human aging, which is an important part of the targeted and rationality of formulating and testing effective treatment and prevention of age-related cognitive decline. Many key neuroanatomical and functional features of the prefrontal cortex (PFC) are preserved in rodents, allowing for meaningful cross-species comparisons related to cognitive aging research. The detection of working memory and cognitive flexibility is a key method for evaluating rodent EF.
Fig.2 Homology between human and rodent prefrontal cortex. (Bizon, 2012)
Methods of Assessing Executive Function
- Working memory test method:
- Delayed alternation task.
- Maze task: Radial arm maze task / Barnes maze task / Delayed match-to-sample water maze task.
- Cognitive flexibility testing methods:
- Digging set-shifting task.
- Maze-based set-shifting task.
- Operant set-shifting task.
Given that EF is usually framed by "higher-order" cognitive functions, many neuroscience tools such as in vivo neuroimaging, electrophysiology, and histological research can be combined with cognitive assessment to reveal age-related cognitions.
Creative Biolabs has advanced technology to compare the neurocognitive models of primates with different brain tissues, monitor and manipulate the neuronal activities of behavioral animals, help customers identify biological factors related to cognitive aging, and reveal potential therapeutic interventions to advance the study of cognitive aging in neurobiology. Please feel free to contact us if you are interested or have any questions.
References
- Lacreuse, A.; et al. Age-related decline in executive function as a hallmark of cognitive ageing in primates: an overview of cognitive and neurobiological studies. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020, 375(1811): 20190618.
- Bizon, J.L.; et al. Characterizing cognitive aging of working memory and executive function in animal models. Frontiers in aging neuroscience. 2012, 4: 19.
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P2275) (Cat#: NRP-0422-P2275)
- NeuroMab™ Anti-Integrin αvβ8 BBB Shuttle Antibody(NRZP-1222-ZP1218) (Cat#: NRZP-1222-ZP1218)
- NeuroMab™ Anti-EPHB2 Antibody(NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- NeuroMab™ Anti-SEZ6 Antibody(NRP-0422-P517) (Cat#: NRP-0422-P517)
- iNeuMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1684) (Cat#: NRP-0422-P1684)
- NeuroMab™ Anti-ApoC3 BBB Shuttle Antibody(NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- NeuroMab™ Anti-Alpha Synuclein BBB Shuttle Antibody(NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- iNeu™ Human Sensory Neurons (Cat#: NCL-2103-P62)
- Immortalized Human Cerebral Microvascular Endothelial Cells (Cat#: NCL-2108-P020)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Mouse Microglia from C57BL/6 (Cat#: NCL-21P6-082)
- Human Dental Pulp Stem Cells (Cat#: NRZP-1122-ZP113)
- Green Fluorescent Tau SH-SY5Y cell Line (Cat#: NCL2110P219)
- Human Astrocytes, Immortalized (Cat#: NCL-2105-P182-AM)
- Mouse Midbrain Dopaminergic Neuron Cell MN9D (Cat#: NCL2110P059)
- Green Fluorescent BACE1 Cell Lines (Cat#: NCL2110P214)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- pAAV-syn-FLEX-jGCaMP8m-WPRE (Cat#: NTA-2106-P065)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- pAAV-syn-jGCaMP8m-WPRE (Cat#: NTA-2106-P062)
- pAAV-syn-FLEX-jGCaMP8f-WPRE (Cat#: NTA-2106-P064)
- Dextran, Cy5 Labeled, 2000 kDa (Cat#: NRZP-0722-ZP22)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- pAAV-hSyn-DIO-XCaMP-R-WPRE (Cat#: NTA-2012AD-P508)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)