The Use of Animals in Neuroscience
Why Choose Model Organisms in Neuroscience?
The establishment and application of animal models play an important role in the research of neurological diseases. The selection of experimental animals in the nervous system animal experiment is generally based on the characteristics of the animal's nervous system. Creative Biolabs has advanced technology and provides several animal models suitable for different use laboratories, thereby promoting basic research on neurological diseases.
The use of specific model systems to explore neuroscience issues has enabled the rapid development of a large number of databases, and standardized animal procedures in laboratories and institutions. It provides scientific rigor and allows careful comparison of research results, which reduces costs and simplifies daily operations. A set of examples that were awarded the Nobel Prize, were the study of the neurological properties of squid, frog, horseshoe crab, aplysia, and rat.
Typical Animal Models for Neuroscience Research

- Action ability
- Synaptic transmission
- Retinal physiology and lateral inhibition
- Learning and memory
- Space representation
Squid was used to study the underlying mechanism of action potential generation due to its huge axons. Which one allows the insertion of voltage clamp electrodes.
Frogs were used to study the mechanism of synaptic transmission because their behavior is simple, but the synapses involved are large.
Horseshoe crabs were used to study the physiological mechanisms of the retina, including lateral inhibition, because of the accessibility of single nerve cells and the convenient structure of compound eyes.
Aplysia was used to study the neurobiology of learning and memory because of its simple form of learning ability and the easily recognizable and accessible neurons that regulate these behaviors.
Rats were used to study the neural components of spatial representations, because of their exploratory behavior and size, allowing neural recordings in free behavior.
Application of Animal Models in Neuroscience Research
Generally, due to the diversity of species, the choice of model organisms is full of possibilities. The diversity of animal models can provide extraordinary insights into the use of standard model systems to study neuroscience problems. The application of other model organisms to neuroscience problems includes:
- Sensory processing of weak electric fish.
- The odor coding of insects releasing signal factors.
- The lobster neuromodulator reconfigures the neural network.
- The chick's nerve growth factor, gamma-aminobutyric acid produced in crabs has a neuroinhibitory effect.
- Research on the sound location of barn owls and their basic neural mechanism.
Unique Functions of Model Organisms in Neuroscience
- Assessment of Drug Addiction in Rats
- Assessment of Episodic Memory in Animals
- Assessment of Executive Function and Higher-Order Cognition in Animals
- Assessment of Spatial Memory in Animals
- Assessment of Study Learning and Memory in Invertebrates
- C. elegans in Neurosciences
Creative Biolabs has advanced technology and mature methods in the research of neuroscience problems. We are committed to providing customers with high-quality R&D services and assistance on neurological research issues. We have a full line of off-the-shelf and customized products for different neurosecretion research. Please feel free to contact us if you are interested or have any questions.
Reference
- Yartsev, M.M.; The emperor’s new wardrobe: rebalancing diversity of animal models in neuroscience research. Science. 2017, 358(6362): 466-469.
- iNeuMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- iNeuMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- iNeuMab™ Anti-GARP Antibody (NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P2293) (Cat#: NRP-0422-P2293)
- iNeuMab™ Anti-Amyloid Beta 1-15 Antibody (NRP-0422-P867) (Cat#: NRP-0422-P867)
- iNeuMab™ Anti-pTau Antibody (NRP-0422-P1719) (Cat#: NRP-0422-P1719)
- iNeuMab™ Anti-F-Spondin/SPON1 Antibody, Clone 3F4 (Cat#: NRZP-0822-ZP4740)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P1760) (Cat#: NRP-0422-P1760)
- iNeuMab™ Anti-EPHB2 Antibody (NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- Rat Glioma Cell Line C6 (Cat#: NCL2110P346)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Mouse Midbrain Dopaminergic Neuron Cell MN9D (Cat#: NCL2110P059)
- iNeu™ Human Sensory Neurons (Cat#: NCL-2103-P62)
- Human Neurons Isolated from Cortex (Cat#: NCL-21P6-023)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Immortalized Human Cerebral Microvascular Endothelial Cells (Cat#: NCL-2108-P020)
- Green Fluorescent Tau cell Line (Cat#: NCL2110P219)
- iNeu™ Human Neural Stem Cell Line (Cat#: NCL200552ZP)
- Human Microglia Cell Line HMC3, Immortalized (Cat#: NCL-2108P38)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)