The Use of Animals in Neuroscience
Why Choose Model Organisms in Neuroscience?
The establishment and application of animal models play an important role in the research of neurological diseases. The selection of experimental animals in the nervous system animal experiment is generally based on the characteristics of the animal's nervous system. Creative Biolabs has advanced technology and provides several animal models suitable for different use laboratories, thereby promoting basic research on neurological diseases.
The use of specific model systems to explore neuroscience issues has enabled the rapid development of a large number of databases, and standardized animal procedures in laboratories and institutions. It provides scientific rigor and allows careful comparison of research results, which reduces costs and simplifies daily operations. A set of examples that were awarded the Nobel Prize, were the study of the neurological properties of squid, frog, horseshoe crab, aplysia, and rat.
Typical Animal Models for Neuroscience Research

- Action ability
- Synaptic transmission
- Retinal physiology and lateral inhibition
- Learning and memory
- Space representation
Squid was used to study the underlying mechanism of action potential generation due to its huge axons. Which one allows the insertion of voltage clamp electrodes.
Frogs were used to study the mechanism of synaptic transmission because their behavior is simple, but the synapses involved are large.
Horseshoe crabs were used to study the physiological mechanisms of the retina, including lateral inhibition, because of the accessibility of single nerve cells and the convenient structure of compound eyes.
Aplysia was used to study the neurobiology of learning and memory because of its simple form of learning ability and the easily recognizable and accessible neurons that regulate these behaviors.
Rats were used to study the neural components of spatial representations, because of their exploratory behavior and size, allowing neural recordings in free behavior.
Application of Animal Models in Neuroscience Research
Generally, due to the diversity of species, the choice of model organisms is full of possibilities. The diversity of animal models can provide extraordinary insights into the use of standard model systems to study neuroscience problems. The application of other model organisms to neuroscience problems includes:
- Sensory processing of weak electric fish.
- The odor coding of insects releasing signal factors.
- The lobster neuromodulator reconfigures the neural network.
- The chick's nerve growth factor, gamma-aminobutyric acid produced in crabs has a neuroinhibitory effect.
- Research on the sound location of barn owls and their basic neural mechanism.
Unique Functions of Model Organisms in Neuroscience
- Assessment of Drug Addiction in Rats
- Assessment of Episodic Memory in Animals
- Assessment of Executive Function and Higher-Order Cognition in Animals
- Assessment of Spatial Memory in Animals
- Assessment of Study Learning and Memory in Invertebrates
- C. elegans in Neurosciences
Creative Biolabs has advanced technology and mature methods in the research of neuroscience problems. We are committed to providing customers with high-quality R&D services and assistance on neurological research issues. We have a full line of off-the-shelf and customized products for different neurosecretion research. Please feel free to contact us if you are interested or have any questions.
Reference
- Yartsev, M.M.; The emperor’s new wardrobe: rebalancing diversity of animal models in neuroscience research. Science. 2017, 358(6362): 466-469.

- iNeuMab™ Rabbit Anti-LRRK2 Monoclonal Antibody (CBP1887) (Cat#: NAB-08-PZ735)
- iNeuMab™ Anti-TREM2 Antibody (NRP-0422-P792) (Cat#: NRP-0422-P792)
- iNeuMab™ Anti-TNFα BBB Shuttle Antibody (NRZP-1022-ZP4105) (Cat#: NRZP-1022-ZP4105)
- iNeuMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- iNeuMab™ Anti-ApoC3 BBB Shuttle Antibody (NRZP-1022-ZP3503) (Cat#: NRZP-1022-ZP3503)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P2275) (Cat#: NRP-0422-P2275)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- iNeuMab™ Anti-CD32b Antibody (NRP-0422-P1803) (Cat#: NRP-0422-P1803)
- iNeuMab™ Mouse Anti-LRP1 Monoclonal Antibody (CBP3363) (Cat#: NAB-0720-Z6479)
- iNeuMab™ Anti-SEZ6 Antibody (NRP-0422-P517) (Cat#: NRP-0422-P517)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- iNeu™ Human Schwann Cell (Cat#: NCL-2103-P63)
- Mouse Retinal Ganglion Cell Line RGC-5 (Cat#: NCL2110P154)
- iNeu™ Human Neural Stem Cell Line (Cat#: NCL200552ZP)
- Mouse Glioma Cell Line GL261 (Cat#: NCL-2108P28)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Mouse Glioma Cell Line GL-261-Luc (Cat#: NCL-2108P06)
- Human Neurons Isolated from Cortex (Cat#: NCL-21P6-023)
- Mouse Microglia from C57BL/6 (Cat#: NCL-21P6-082)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)