Action Potential Conduction
Introduction of Action Potential Conduction
The action potential is a transient depolarization of the membrane potential of excitable cells. Its main functions are to transmit and encode information and initiate multiple cellular events. Relative to extracellular space, the inside of unstimulated cells is at a negative potential, that is, the resting potential. Through stimulating processes, the action potential is generated in a section of the axon. A small electrical current will flow between the regions of different polarity and this current will depolarize the resting region of the cell membrane. A sufficiently large current in the local circuit will depolarize the quiescent region of the membrane to the threshold and initiate an action potential in this region.
Fig.1 The local circuit hypothesis underlying action potential conduction in an unmyelinated axon. (Fry, 2010)
Factors Affecting Action Potentials Conduction Velocity
Action potentials conduction along with excitable cells can be affected by multiple factors. For example, the speed of C-fibres from somatosensory receptors is as low as 0.5 m/s, whilst type IA afferent nerve fibers from muscle spindles propagate up to 120 m/s. And the cardiac impulse propagates even more slowly at 0.05 cm/s in tissues such as the atrioventricular node.
- Fiber diameter
- Myelination
- Temperature, pressure, hypoxia
- Ion channel number
Fiber diameter is the basic factor to determine propagation velocity. In general, the larger the diameter is, the greater the velocity will be.
For vertebrates, myelination is a key evolutionary to increase action potential conduction speed. Some studies have shown that a 10 μm myelinated fiber conducts an action potential at about 50 m/s which is almost twice as that in an invertebrate unmyelinated axon of about 500 μm diameter.
An increase in temperature will lead to an increase in ion channel dynamics and ultimately an increase in action potentials conduction speed. In contrast, the conduction speed would be slow when the body temperatures are lower than normal. However, conduction block may occur at temperatures > 40℃ and the generation of action potentials may stop, because K⁺ opening is more enhanced than Na⁺ channels. In addition, physical pressure applied to nerves and hypoxia also slow conduction speed.
The conduction velocity can be influenced by the number of ion channels contributing to the depolarizing phase of the action potential. A decreased ion channel number reduces the magnitude of local circuits and thus reduces conduction velocity.
As a global company with extensive scientific expertise, we guide clients from discovery to approval and provide continuity for their entire program. Now we can provide a series of services and products for neuroscience research. If you are interested in our services and products, please do not hesitate to contact us for more detailed information.
Reference
- Fry, C.; Jabr, R. The action potential and nervous conduction. Surgery (Oxford). 2010, 28(2): 49-54.
- iNeuMab™ Anti-Integrin αvβ8 BBB Shuttle Antibody (NRZP-1222-ZP1218) (Cat#: NRZP-1222-ZP1218)
- iNeuMab™ Anti-pTau Antibody (NRP-0422-P1719) (Cat#: NRP-0422-P1719)
- iNeuMab™ Anti-F-Spondin/SPON1 Antibody, Clone 3F4 (Cat#: NRZP-0822-ZP4740)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- iNeuMab™ Anti-SEZ6 Antibody (NRP-0422-P515) (Cat#: NRP-0422-P515)
- iNeuMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- iNeuMab™ Anti-ApoC3 BBB Shuttle Antibody (NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- iNeuMab™ Anti-GARP Antibody (NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- iNeuMab™ Anti-ApoC3 BBB Shuttle Antibody (NRZP-1022-ZP3503) (Cat#: NRZP-1022-ZP3503)
- Human Astrocytes, Immortalized (Cat#: NCL-2105-P182-AM)
- Green Fluorescent Tau cell Line (Cat#: NCL2110P219)
- Human Brain Astroblastoma U-87 MG (Cat#: NCL2110P117)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- Mouse Retinal Ganglion Cell Line RGC-5 (Cat#: NCL2110P154)
- Human Dental Pulp Stem Cells (Cat#: NRZP-1122-ZP113)
- Mouse Microglia from C57BL/6 (Cat#: NCL-21P6-082)
- iNeu™ Human Schwann Cell (Cat#: NCL-2103-P63)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Mouse Retinal Ganglion Cells (Cat#: NCL2110P145)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)