Nervous System Signal Transmission
Overview
The nervous system is an information processing system with external and internal inputs and outputs. External information is received from the environment, sense organs, and other parts of the organism. Besides external inputs, similar signal patterns are generated within the nervous system by internal signal sources. As far as output is concerned, information is sent through special pathways to well-defined external outputs, e.g., musculation or secretory organs, where ‘decoding’ occurs: the electrical signal pattern is converted into muscle contraction or some secretion.
Two phenomena are basic for signal transmission in the nervous system. One is the action potential, a transient change in the electrical potential difference across the nerve cell membrane, propagating without decay along with the cylindrical parts (axons) of nerve cells (axonal transmission). The other is the signal transmission from one cell to another, which occurs at particular contact sites between cells (synapses).
Neuronal Membrane & Action Potential
Differences in concentration and electrical potential are maintained across the neuronal membrane. Action potentials can occur due to changes in the permeabilities of specific ions. Neurons encode information by generating sequences of action potentials. Action potential shapes and firing patterns differ widely among different types of neurons. Action potentials encode information in their frequency and pattern in neuronal cell bodies and serve primarily to rapidly propagate signals over distance in axons. Once an action potential is initiated, it causes local currents in an adjacent part of the membrane, which are large enough to cause this part to be excited, thus propagating the action potential along the axon without decay. The system of ionic currents that controls action potential shape and firing patterns in central neurons, although complex, has remarkable advantages for pursuing general problems in systems biology (such as robustness and redundancy): it has highly quantifiable elements, which are well-suited to mathematical modeling.
Synaptic Transmission
There are two types of synaptic transmission. First, two nerve cells can be tightly coupled so that direct electrical transmission becomes possible. More commonly, two nerve cells (or a nerve cell and a muscle cell in the neuro-muscular junction) are separated at their place of contact by a region of extracellular fluid tens of nanometres wide; this is called the synaptic cleft and constitutes an electrical leakage pathway for a presynaptic action potential, thus preventing electrical transmission. In these cases, transmission is mediated by a complicated chemical mechanism. Presynaptic and postsynaptic cells can dynamically change their signaling behavior based on their internal state or the cues they receive from other cells. This type of plasticity, or capacity for change, makes the synapse a key site for altering neural circuit strength and plays a role in learning and memory.
Neuromuscular Junctions and Gap Junctions
The same neuron can form both adjacent electrical and chemical synapses (neuromuscular junctions). In many respects, synapses between neurons resemble the neuromuscular junction. At a molecular level, many proteins of synaptic vesicles are shared by interneuronal synapses and neuromuscular junctions, as are voltage-sensitive ion channels. Gap junctions have been described as ultrastructural between neurons and epitheliomuscular cells and between neurons and their processes. Gap junctions show a wide distribution of intercellular connections characterized by two apposed plasma membranes exhibiting a 2-4 nm intermembrane gap continuous with extracellular space. It is generally agreed that gap junctions in excitable tissues function as electrotonic synapses. Neuronal gap junctions infrequently occur as compared to chemical synapses.
Active in the neuroscience research field, Creative Biolabs is considered a leading manufacturer of the class of services and products worldwide. We have a full line of high-quality products such as antibodies, proteins, cell lines, cell culture tools, and modulators; our customized services cover every aspect of the neuroscience field to meet your needs. Please do not hesitate to contact us for more detailed information.
- iNeuMab™ Anti-TREM2 BBB Shuttle Antibody (NRZP-1022-ZP4114) (Cat#: NRZP-1022-ZP4114)
- iNeuMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- iNeuMab™ Anti-TNFα BBB Shuttle Antibody (NRZP-1022-ZP4105) (Cat#: NRZP-1022-ZP4105)
- iNeuMab™ Anti-CD32b Antibody (NRP-0422-P1803) (Cat#: NRP-0422-P1803)
- iNeuMab™ Anti-SEZ6 Antibody (NRP-0422-P517) (Cat#: NRP-0422-P517)
- iNeuMab™ Anti-pTau Antibody (NRP-0422-P1719) (Cat#: NRP-0422-P1719)
- iNeuMab™ Anti-GARP Antibody (NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- iNeuMab™ Anti-ApoC3 BBB Shuttle Antibody (NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- iNeuMab™ Anti-CD20 Antibody (NRP-0422-P1230) (Cat#: NRP-0422-P1230)
- iNeuMab™ Anti-Alpha Synuclein Antibody (NRP-0422-P614) (Cat#: NRP-0422-P614)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Mouse Midbrain Dopaminergic Neuron Cell MN9D (Cat#: NCL2110P059)
- iNeu™ Human Neural Stem Cell Line (Cat#: NCL200552ZP)
- Human Retinal Epithelial Cell ARPE-19 (Cat#: NCL2110P069)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Rat Glioma Cell Line C6 (Cat#: NCL2110P346)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- Mouse Glioma Cell Line GL261 (Cat#: NCL-2108P28)
- Immortalized Human Cerebral Microvascular Endothelial Cells (Cat#: NCL-2108-P020)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)