Neuromuscular Disorders
Neuromuscular disorders (NMDs) are a broad and heterogeneous group of diseases affecting the peripheral nervous system and/or muscles. NMDs are largely genetic disorders. Their symptoms may include muscle weakness, contractures, cardiomyopathy, and/or peripheral neuropathy. Overall, they can lead to a shorter life expectancy. NMDs vary in terms of age of onset, severity, and prognosis. They are classified based on the patients and phenotype and genetic background and include, among others, the following diseases: spinal muscular atrophy (SMA), charcot-marie-tooth disease (CMT), amyotrophic lateral sclerosis (ALS), duchenne muscular dystrophy (DMD), and limb-girdle muscular dystrophy (LGMD).
Neuromuscular diseases have high phenotypic variability, with mutations in one gene often leading to different phenotypes. An example of this is individuals affected by a charcot-marie-tooth 1 A disease (CMT1A), carrying a copy of the PMP22 gene.
Genetic Modifiers in NMDs
Modifier genes belong to different pathways and are mainly involved in TGF-β signaling/extracellular matrix remodeling, endoplasmic reticulum metabolism, RNA turnover, nerve formation, growth and myelination, inflammation, and regeneration. There is an emerging concept that shared pathways can link a few modifier genes in the same disease and that shared molecular mechanisms can underlie several NMDs.
Delivery Methods for NMDs
- Cell Therapy
- Viral Gene Delivery
- Non-viral Gene and Protein Delivery.
Repopulation of skeletal muscle with myoblasts has been proposed as a potential treatment for severe neuromuscular disorders. Owing to the challenge of obtaining enough human myoblasts, muscle progenitors have been derived from induced pluripotent stem cells (iPSCs) using conditional PAX7 expression. Engraftment of these cells into damaged muscles has been shown to improve muscle contractility in mdx mice. By means of genome engineering, patient-derived cells such as iPSCs can be genetically corrected, then used to repopulate dystrophic muscle and improve the muscle phenotype.
Viral vectors are currently the most likely candidates for systemic gene delivery or highly efficient delivery to cultured patient cells. AAVs are ideal vectors in part because AAV rarely integrates into the host genome and, instead, exists in an episomal state. Another prominent candidate for gene delivery is lentivirus. Adenovirus might also prove to be an effective gene delivery vector, as it has a much larger genome than AAV and remains episomal.
In skeletal muscle, non-viral delivery approaches have included direct plasmid injection, oligonucleotides for exon skipping, and oligonucleotides for genome editing. Direct delivery of Cas9-gRNA ribonucleoprotein has been demonstrated in primary cells and in local settings in vivo, such as the inner ear, although systemic administration of ribonucleoprotein complexes will be considerably more challenging.
Creative Biolabs is an innovative and experienced provider of neuroscience products and solutions. We use our state-of-the-art R&D expertise to help our clients develop outstanding research results. Please feel free to contact us if you have any questions.
- iNeuMab™ Mouse Anti-LRP1 Monoclonal Antibody (CBP3363) (Cat#: NAB-0720-Z6479)
- iNeuMab™ Rabbit Anti-LRRK2 Monoclonal Antibody (CBP1887) (Cat#: NAB-08-PZ735)
- iNeuMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- iNeuMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- iNeuMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- iNeuMab™ Anti-F-Spondin/SPON1 Antibody, Clone 3F4 (Cat#: NRZP-0822-ZP4740)
- Human Blood Brain Barrier Model (Cat#: NCL-2103-P187)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- Mouse Microglia N9 (Cat#: NCL2110P073)
- Rat Microglia Cell Line HAPI, Immortalized (Cat#: NCL2110P015)
- iNeu™ Human Motor Neurons (Cat#: NCL-2103-P71)
- Green Fluorescent BACE1 Cell Lines (Cat#: NCL2110P214)
- Mouse Midbrain Dopaminergic Neuron Cell MN9D (Cat#: NCL2110P059)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)