Assessment of Spatial Memory in Animals
Spatial Memory
Spatial memory refers to the memory of the location information of objects in the storage space, in other words, the spatial attributes of the storage environment. The analysis of spatial learning and memory in rodents is usually used to study the mechanisms behind certain forms of human cognition, like the testing of episodic memory in animal models, to simulate their function in psychiatric and neurodegenerative diseases obstacle.
Typical Paradigm of Spatial Memory Evaluation
Generally, spatial memory was used as a model to understand cognitive mechanisms, and it was studied through three approaches: cognitive psychology, cognitive neuroscience, cognitive molecules, and cytology. The main animal model is a rodent. There are four main test paradigms for spatial working memory and spatial reference memory:
- Radial arm maze
- Spontaneous alternation and win-shift tests in T and Y mazes
- Spatial version of spontaneous object recognition test
- Water maze test
Fig.1 Several navigation task designs used to study spatial memory in rodents. (Bizon, 2012)
Application of Spatial Memory in Neuroscience Research
Spatial memory is extremely important for animal health because it can remember the location of nests or shelters, as well as related resources such as food, water, or sexual partners. A typical behavioral response that relies on spatial memory is navigation (the ability to travel from one place to another). This means that navigation is an observable and measurable behavior that is used by behavioral biologists to gain insight into spatial memory and as a model of human cognitive function.
Fig.2 Stroke induces abnormal neurogenesis and impaired spatial memory. (Woitke, 2017)
The study of spatial memory in transgenic mice has become a common way to study human autobiographical memory and the degeneration of molecules and cells in dementia.
- Spatial memory ability is usually used to test genetically modified mice which are associated with age-related memory decline or neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), schizophrenia, autism, Attention deficit, and hyperactivity disorder (ADHD).
- Computer science modeling of the sensory motion control of robots shows that the flexible solution of tasks requires the application of cognitive principles such as setting action goals and choosing to achieve action goals. The evaluation of spatial memory has stimulated most of the research on the neural mechanisms of learning and memory and has also played an important role in the connection between artificial intelligence and neurological disease treatment.
References
- Morellini, F.; Spatial memory tasks in rodents: what do they model? Cell and Tissue Research. 2013, 354(1): 273-286.
- Bizon, J.L.; et al. Characterizing cognitive aging of working memory and executive function in animal models. Frontiers in aging neuroscience. 2012, 4: 19.
- Woitke, F.; et al. Adult hippocampal neurogenesis poststroke: More new granule cells but aberrant morphology and impaired spatial memory. PloS one. 2017, 12(9): e0183463.
- NeuroMab™ Anti-TREM2 BBB Shuttle Antibody(NRZP-1022-ZP4114) (Cat#: NRZP-1022-ZP4114)
- NeuroMab™ Anti-Integrin αvβ8 BBB Shuttle Antibody(NRZP-1222-ZP1218) (Cat#: NRZP-1222-ZP1218)
- NeuroMab™ Anti-GD2 Antibody(NRZP-1222-ZP767) (Cat#: NRZP-1222-ZP767)
- NeuroMab™ Rabbit Anti-LRRK2 Monoclonal Antibody (CBP1887) (Cat#: NAB-08-PZ735)
- NeuroMab™ Anti-GARP Antibody(NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- NeuroMab™ Anti-CD20 Antibody(NRP-0422-P1230) (Cat#: NRP-0422-P1230)
- NeuroMab™ Anti-F-Spondin/SPON1 Antibody, Clone N24875P (CBP11839) (Cat#: NRZP-0822-ZP4740)
- NeuroMab™ Anti-SEZ6 Antibody(NRP-0422-P515) (Cat#: NRP-0422-P515)
- NeuroMab™ Anti-FGFR1 Antibody(NRP-0422-P1244) (Cat#: NRP-0422-P1244)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- iNeu™ Retinal Pigment Epithelial Cells (RPE) (Cat#: NRZP-0323-ZP92)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Human Brain Astroblastoma U-87 MG (Cat#: NCL2110P117)
- Human Neurons Isolated from Cortex (Cat#: NCL-21P6-023)
- Rat Glioma Cell Line C6 (Cat#: NCL2110P346)
- Mouse Microglia from C57BL/6 (Cat#: NCL-21P6-082)
- Green Fluorescent BACE1 Cell Lines (Cat#: NCL2110P214)
- Sf295 Human Glioblastoma Cells (Cat#: NCL-2108P180)
- iNeu™ Human Neural Stem Cell Line (Cat#: NCL200552ZP)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- AAV2/2Retro-CAG-DIO-EGFP-2A-TetTox-pA [Neural Tracing] (Cat#: NTA-2012-ZP303)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- AAV2/9-hEF1a-DIO-mCherry-P2A-TetTox-WPRE-pA (Cat#: NTA-2012-ZP268)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- AAV-mDLX-CRE-tdTomato (Cat#: NRZP-0622-ZP721)
- AAV-EF1a-mCherry-flex-dtA (Cat#: NRZP-0622-ZP616)
- pAAV-hSyn-DIO-XCaMP-R-WPRE (Cat#: NTA-2012AD-P508)
- pAAV-EF1a-DIO-EGFP-WPRE (Cat#: NTA-2012AD-P285)
- PRV-CAG-EGFP (Cat#: NTA-2011-ZP14)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)