Assessment of Spatial Memory in Animals
Spatial Memory
Spatial memory refers to the memory of the location information of objects in the storage space, in other words, the spatial attributes of the storage environment. The analysis of spatial learning and memory in rodents is usually used to study the mechanisms behind certain forms of human cognition, like the testing of episodic memory in animal models, to simulate their function in psychiatric and neurodegenerative diseases obstacle.
Typical Paradigm of Spatial Memory Evaluation
Generally, spatial memory was used as a model to understand cognitive mechanisms, and it was studied through three approaches: cognitive psychology, cognitive neuroscience, cognitive molecules, and cytology. The main animal model is a rodent. There are four main test paradigms for spatial working memory and spatial reference memory:
- Radial arm maze
- Spontaneous alternation and win-shift tests in T and Y mazes
- Spatial version of spontaneous object recognition test
- Water maze test
Fig.1 Several navigation task designs used to study spatial memory in rodents. (Bizon, 2012)
Application of Spatial Memory in Neuroscience Research
Spatial memory is extremely important for animal health because it can remember the location of nests or shelters, as well as related resources such as food, water, or sexual partners. A typical behavioral response that relies on spatial memory is navigation (the ability to travel from one place to another). This means that navigation is an observable and measurable behavior that is used by behavioral biologists to gain insight into spatial memory and as a model of human cognitive function.
Fig.2 Stroke induces abnormal neurogenesis and impaired spatial memory. (Woitke, 2017)
The study of spatial memory in transgenic mice has become a common way to study human autobiographical memory and the degeneration of molecules and cells in dementia.
- Spatial memory ability is usually used to test genetically modified mice which are associated with age-related memory decline or neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), schizophrenia, autism, Attention deficit, and hyperactivity disorder (ADHD).
- Computer science modeling of the sensory motion control of robots shows that the flexible solution of tasks requires the application of cognitive principles such as setting action goals and choosing to achieve action goals. The evaluation of spatial memory has stimulated most of the research on the neural mechanisms of learning and memory and has also played an important role in the connection between artificial intelligence and neurological disease treatment.
References
- Morellini, F.; Spatial memory tasks in rodents: what do they model? Cell and Tissue Research. 2013, 354(1): 273-286.
- Bizon, J.L.; et al. Characterizing cognitive aging of working memory and executive function in animal models. Frontiers in aging neuroscience. 2012, 4: 19.
- Woitke, F.; et al. Adult hippocampal neurogenesis poststroke: More new granule cells but aberrant morphology and impaired spatial memory. PloS one. 2017, 12(9): e0183463.
- iNeuMab™ Anti-ApoC3 BBB Shuttle Antibody (NRZP-1022-ZP3503) (Cat#: NRZP-1022-ZP3503)
- iNeuMab™ Anti-pTau Antibody (NRP-0422-P1719) (Cat#: NRP-0422-P1719)
- iNeuMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- iNeuMab™ Anti-TNFα BBB Shuttle Antibody (NRZP-1022-ZP4105) (Cat#: NRZP-1022-ZP4105)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P2275) (Cat#: NRP-0422-P2275)
- iNeuMab™ Anti-CD32b Antibody (NRP-0422-P1803) (Cat#: NRP-0422-P1803)
- iNeuMab™ Anti-TREM2 BBB Shuttle Antibody (NRZP-1022-ZP4114) (Cat#: NRZP-1022-ZP4114)
- iNeuMab™ Rabbit Anti-LRRK2 Monoclonal Antibody (CBP1887) (Cat#: NAB-08-PZ735)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P1686) (Cat#: NRP-0422-P1686)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- Mouse Microglia N9 (Cat#: NCL2110P073)
- Human Brain Astroblastoma U-87 MG (Cat#: NCL2110P117)
- Human Astrocytes, Immortalized (Cat#: NCL-2105-P182-AM)
- Rat Immortalized Retinal Muller Cell Line rMC-1 (Cat#: NCL-2106-S93)
- Rat Microglia Cell Line HAPI, Immortalized (Cat#: NCL2110P015)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- Mouse Retinal Ganglion Cells (Cat#: NCL2110P145)
- iNeu™ Human Schwann Cell (Cat#: NCL-2103-P63)
- Green Fluorescent BACE1 Cell Lines (Cat#: NCL2110P214)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)