Cognitive Dysfunction in Psychiatric Disorders
Cognitive dysfunction does not just signify poor memory, the range of cognitive impairment is broader and more complex.
Basis of Cognitive Impairment in Disease
- Cerebral circuits and cellular cascades controlling cognition
Cognition can be best understood in terms of complex networks operating over multiple temporal scales and incorporating diverse dimensions: from cellular cascades to cerebral circuits and, ultimately, society. Specific domains such as executive function and social cognition are integrated across broad suites of interlinked and overlapping cerebral regions. Moreover, a diverse palette of neuromodulators, including acetylcholine, cytokines, and brain-derived neurotrophic factor (BDNF), influence cognitive performance.
Pharmacotherapy does not target cerebral circuits perse; rather, it targets G protein-coupled receptors (GPCRs), ion channels, transporters, and other proteins involved in the actions of neuromodulators. These molecular substrates of cognition constitute a vast repertoire of potential drug targets for countering cognitive impairment in psychiatric disorders.
Representing a level of integration that is intermediate between cells and cerebral circuits, neurons do not generally act in isolation; rather, they operate as synchronized and rhythmically active assemblies to encode, transmit and modulate information underpinning cognitive function.
Fig.1 Schematic representation of major cerebral circuits underpinning core cognitive domains that are disrupted in psychiatric disorders. (Millan, 2012)
- Disruption of cerebral networks as a cause of cognitive impairment
Cognitive deficits observed in schizophrenia have long been ascribed to reduced activation of the dorsolateral PFC (known as hypofrontality) but many cortical and subcortical structures are also affected, with a complex pattern of region-dependent hypo- or hyperactivation, increased activity may reflect an attempt to compensate for insufficient performance. Cognitive impairment in psychiatric disorders is characterized by a complex pattern of disconnection and over connection. An important issue, therefore, is whether the circuits controlling cognition can be reconstituted once they are disrupted, as certain structural perturbations may be irreversible.
- Genetic risk factors for cognitive deficits in psychiatric disorders
First, although psychiatric disorders have a moderate to high heritability, genetic risk factors are numerous and only have a small effect; they show low penetrance and epistasis. Second, if a mutation, deletion, or other genetic defect is associated with a psychiatric disorder, this does not necessarily indicate a role in the induction of cognitive impairment. Third, even if a genetic defect is implicated in the pathological mechanisms that lead to cognitive impairment, it is not an appropriate target for their alleviation. Fourth, some plasticity-related genes predispose individuals to cognitive deficits under adverse developmental conditions but have the opposite effect in a favorable environment. Last, the limited success of even genome-wide studies in finding genes that are major risk factors may also be ascribed to additional layers that can epigenetically control mask the effects of genetic defects.
Fig.2 An overview of molecular substrates targeted by drugs that are designed to enhance cognitive performance in psychiatric disorders. (Millan, 2012)
Strategies to Counter Cognitive Impairment
- Direct and indirect modulation of cognitive performance by pharmacotherapy
- Limited clinical feedback
- Complex effects on cognition: bell-shaped dose-response curves
- Normalization of pathological processes versus symptomatic strategies
- Domain-specific and generalized improvements in cognitive performance
- Intracellular targets
- Neurogenesis
- Epigenetics
- Modulation of miRNA-controlled neural circuits
- Coupling pharmacotherapy with alternative strategies
Clinical Development of Pro-cognitive Agents
Clinical studies of pro-cognitive agents can now use various techniques with experimental counterparts for estimating optimal drug doses for efficacy, tracking cognitive actions in a manner complementary to behavioral rating scales, improving stratification of patients for drug trials, and exploring cerebral mechanisms of pro-cognitive properties.
Fig.3 Overview of translational models for characterizing and predicting the influence of pharmacological agents on cognitive function in humans. (Millan, 2012)
Products We Can Provide for Cognitive Dysfunction Research
Target name | Product name |
Cat.No |
BDNA | Neuroinflammation Marker (BDNF, ICAM1, TREM2, GFAP, TNF alpha, Iba1) Antibody Array | NAB-0720-Z778 |
BDNA | Anti-Neuroinflammation Marker (BDNF, ICAM1, TREM2, GFAP, TNF alpha, Iba1) Antibody Panel | NAB-08-PZ1439 |
GPCR | Customized GPCR Cell Line | NCL-2105-P61-KB |
GPCR | AGTR1/Ga16/HEK293, GPCR Cell Line | NCL-2105-P64-KB |
GABA | Mouse Anti-GABA Monoclonal Antibody (5A9), Unconjugated | NAB-0720-Z2121 |
As there is no unitary cause of cognitive impairment, and no single solution for its control, many promising lines of research should be pursued. At Creative Biolabs, we have the expertise to optimize each stage in neurosciences research, particularly with a focus on the study of cognitive dysfunction in psychiatric disorders. We ensure that you get your desired outcome and achieve the highest level of efficiency throughout. Please feel free to contact us.
Reference
- Millan, M.J.; et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nature reviews Drug discovery. 2012, 11(2): 141-168.
- NeuroMab™ Anti-SEZ6 Antibody(NRP-0422-P517) (Cat#: NRP-0422-P517)
- NeuroMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- NeuroMab™ Anti-pTau Antibody(NRP-0422-P1719) (Cat#: NRP-0422-P1719)
- NeuroMab™ Anti-EPHB2 Antibody(NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1686) (Cat#: NRP-0422-P1686)
- NeuroMab™ Anti-GARP Antibody(NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- NeuroMab™ Anti-TNFα BBB Shuttle Antibody(NRZP-1022-ZP4105) (Cat#: NRZP-1022-ZP4105)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1760) (Cat#: NRP-0422-P1760)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P2293) (Cat#: NRP-0422-P2293)
- iNeu™ Human Neural Stem Cell Line (Cat#: NCL200552ZP)
- Mouse Retinal Ganglion Cells (Cat#: NCL2110P145)
- Mouse Microglia Cell Line BV-2, Immortalized (Cat#: NCL2110P153)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Immortalized Human Cerebral Microvascular Endothelial Cells (Cat#: NCL-2108-P020)
- Human Astrocytes, Immortalized (Cat#: NCL-2105-P182-AM)
- iNeu™ Human Schwann Cell (Cat#: NCL-2103-P63)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- iNeu™ Human Motor Neurons (Cat#: NCL-2103-P71)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- AAV2/9-hEF1a-DIO-mCherry-P2A-TetTox-WPRE-pA (Cat#: NTA-2012-ZP268)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- rAAV-E-SARE-Cre-ERT2-PEST-WPRE-hGH polyA (Cat#: NTA-2010-TT342)
- pAAV-hSyn-DIO-XCaMP-R-WPRE (Cat#: NTA-2012AD-P508)
- Dextran, Cy5 Labeled, 2000 kDa (Cat#: NRZP-0722-ZP22)
- pAAV-EF1a-DIO-EGFP-WPRE (Cat#: NTA-2012AD-P285)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- AAV-EF1a-mCherry-flex-dtA (Cat#: NRZP-0622-ZP616)
- AAV2/2Retro-CAG-DIO-EGFP-2A-TetTox-pA [Neural Tracing] (Cat#: NTA-2012-ZP303)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)