Learning Disability
What is Learning Disability (LD)?
LD is a neurological disorder. In simple terms, LD results from a difference in the way a person's brain is "wired". LDs can affect neurocognitive processes and may manifest as an imperfect ability to listen, speak, read, spell, write, reason, concentrate, solve mathematical problems, or organize information. LDs may have problems with self-regulating behavior, social perception, and social interaction, but these problems do not in themselves constitute LD. LD can't be cured or fixed, this is a lifelong problem.
Common Types of LDs
- Dyslexia
- Dyscalculia
- Dysgraphia
- Auditory and Visual Processing Disorders
- Nonverbal Learning Disabilities
A language barrier is that a person cannot understand written words. It may also be called a reading disability.
A mathematical handicap is that a person has difficulty in solving arithmetic problems and mastering mathematical concepts.
A writing disability is which a person has difficulty in writing letters in each space.
Sensory impairment is that a person has difficulty in understanding language even with normal hearing and vision.
A neurological disorder that originates in the right hemisphere of the brain and causes problems with visual-spatial, intuitive, organizational, evaluative, and overall processing functions.
Current Status of Research in LD
- Cognitive Correlates
- Genetic Factors
- Neural Factors
Cognitive skills are systematically and differentially correlated with academic skills in the six domains of LDs. Consistent with early work on phonological awareness, word-level LDs are marked by a conspicuous problem with the ability to phonologically represent written words. Problems with spatial perception and executive functions have long been implicated in neuropsychological research on children with specific computational disabilities. In written expression, transcription problems are related to difficulties with fine motor skills, finger recognition and proprioception, and perceptual-motor skills. Spelling is related to phonological awareness and is usually impaired in those with word-level reading disabilities.
The advent of contemporary genetics methods has enormously influenced the scientific understanding of LDs. This research takes three forms: (1) familial patterns, (2) twin studies, and (3) molecular genetics.
In a meta-analysis, 41-74% of the variance in reading achievement and up to 90% of the variance in reading-related processes could be attributed to genetic factors. From the research, numerous candidate loci (i.e., regions of the genome potentially harboring dyslexia-related genes) and a dozen candidate genes have been identified for structural variations that may be associated with variations in reading and reading-related traits. Genetic influences differ and vary with age for math calculation, problem-solving, and fluency.
Significant understanding of the role of the brain in LDs has emerged because of the advent of noninvasive structural and functional neuroimaging. The functional neuroimaging research converges in identifying a network of three left hemisphere regions that support proficient reading and are impaired in people with word-level disorders. The future of neuroimaging research lies with the capacity for multi-modal methods that co-register structural and functional modalities, linking with genetic studies associated with brain development, and eventually metabolic studies through spectroscopy.
Creative Biolabs is a leading international company in the field of neuroscience. We can apply our extensive experience with a learning disability to develop the necessary analysis for your project. You can count on our skilled and passionate workforce to find the most suitable path and to guide you through your clinical journey. Please feel free to contact us.
- iNeuMab™ Anti-Alpha Synuclein BBB Shuttle Antibody (NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P2293) (Cat#: NRP-0422-P2293)
- iNeuMab™ Anti-GD2 Antibody (NRZP-1222-ZP767) (Cat#: NRZP-1222-ZP767)
- iNeuMab™ Mouse Anti-LRP1 Monoclonal Antibody (CBP3363) (Cat#: NAB-0720-Z6479)
- iNeuMab™ Anti-F-Spondin/SPON1 Antibody, Clone 3F4 (Cat#: NRZP-0822-ZP4740)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- iNeuMab™ Anti-ApoC3 BBB Shuttle Antibody (NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- iNeuMab™ Anti-TNFα BBB Shuttle Antibody (NRZP-1022-ZP4105) (Cat#: NRZP-1022-ZP4105)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P1684) (Cat#: NRP-0422-P1684)
- iNeu™ Human Sensory Neurons (Cat#: NCL-2103-P62)
- Human Blood Brain Barrier Model (Cat#: NCL-2103-P187)
- Green Fluorescent BACE1 Cell Lines (Cat#: NCL2110P214)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- Green Fluorescent Alpha-synuclein Cell Line (Cat#: NCL2110P209)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Rat Immortalized Retinal Muller Cell Line rMC-1 (Cat#: NCL-2106-S93)
- Green Fluorescent Tau cell Line (Cat#: NCL2110P219)
- Human Dental Pulp Stem Cells (Cat#: NRZP-1122-ZP113)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)