Learning Disability
What is Learning Disability (LD)?
LD is a neurological disorder. In simple terms, LD results from a difference in the way a person's brain is "wired". LDs can affect neurocognitive processes and may manifest as an imperfect ability to listen, speak, read, spell, write, reason, concentrate, solve mathematical problems, or organize information. LDs may have problems with self-regulating behavior, social perception, and social interaction, but these problems do not in themselves constitute LD. LD can't be cured or fixed, this is a lifelong problem.
Common Types of LDs
- Dyslexia
- Dyscalculia
- Dysgraphia
- Auditory and Visual Processing Disorders
- Nonverbal Learning Disabilities
A language barrier is that a person cannot understand written words. It may also be called a reading disability.
A mathematical handicap is that a person has difficulty in solving arithmetic problems and mastering mathematical concepts.
A writing disability is which a person has difficulty in writing letters in each space.
Sensory impairment is that a person has difficulty in understanding language even with normal hearing and vision.
A neurological disorder that originates in the right hemisphere of the brain and causes problems with visual-spatial, intuitive, organizational, evaluative, and overall processing functions.
Current Status of Research in LD
- Cognitive Correlates
- Genetic Factors
- Neural Factors
Cognitive skills are systematically and differentially correlated with academic skills in the six domains of LDs. Consistent with early work on phonological awareness, word-level LDs are marked by a conspicuous problem with the ability to phonologically represent written words. Problems with spatial perception and executive functions have long been implicated in neuropsychological research on children with specific computational disabilities. In written expression, transcription problems are related to difficulties with fine motor skills, finger recognition and proprioception, and perceptual-motor skills. Spelling is related to phonological awareness and is usually impaired in those with word-level reading disabilities.
The advent of contemporary genetics methods has enormously influenced the scientific understanding of LDs. This research takes three forms: (1) familial patterns, (2) twin studies, and (3) molecular genetics.
In a meta-analysis, 41-74% of the variance in reading achievement and up to 90% of the variance in reading-related processes could be attributed to genetic factors. From the research, numerous candidate loci (i.e., regions of the genome potentially harboring dyslexia-related genes) and a dozen candidate genes have been identified for structural variations that may be associated with variations in reading and reading-related traits. Genetic influences differ and vary with age for math calculation, problem-solving, and fluency.
Significant understanding of the role of the brain in LDs has emerged because of the advent of noninvasive structural and functional neuroimaging. The functional neuroimaging research converges in identifying a network of three left hemisphere regions that support proficient reading and are impaired in people with word-level disorders. The future of neuroimaging research lies with the capacity for multi-modal methods that co-register structural and functional modalities, linking with genetic studies associated with brain development, and eventually metabolic studies through spectroscopy.
Creative Biolabs is a leading international company in the field of neuroscience. We can apply our extensive experience with a learning disability to develop the necessary analysis for your project. You can count on our skilled and passionate workforce to find the most suitable path and to guide you through your clinical journey. Please feel free to contact us.

- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- iNeuMab™ Anti-F-Spondin/SPON1 Antibody, Clone 3F4 (Cat#: NRZP-0822-ZP4740)
- iNeuMab™ Mouse Anti-LRP1 Monoclonal Antibody (CBP3363) (Cat#: NAB-0720-Z6479)
- iNeuMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- iNeuMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- iNeuMab™ Rabbit Anti-LRRK2 Monoclonal Antibody (CBP1887) (Cat#: NAB-08-PZ735)
- iNeuMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- Rat Microglia Cell Line HAPI, Immortalized (Cat#: NCL2110P015)
- iNeu™ Human Motor Neurons (Cat#: NCL-2103-P71)
- iNeu™ Human Schwann Cell (Cat#: NCL-2103-P63)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- iNeu™ Human Oligodendrocyte Progenitor Cells (OPCs) (Cat#: NCL-2103-P49)
- iNeu™ Human Neural Stem Cell Line (Cat#: NCL200552ZP)
- Rat Glioma Cell Line C6 (Cat#: NCL2110P346)
- Green Fluorescent Alpha-synuclein Cell Line (Cat#: NCL2110P209)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Human Dental Pulp Stem Cells (Cat#: NRZP-1122-ZP113)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)