Nasopharyngeal Angiofibroma Drug Discovery Service
Creative Biolabs is a contract research organization in the field of life science. With the increasing demand for neuroscience research, our experienced team integrates research resources and leading technologies to offer global researchers customized one-stop solutions. Our services assist in pathogenesis studies of nasopharyngeal angiofibroma, researchers could therefore explore novel therapeutic strategies.
Background of Nasopharyngeal Angiofibroma
Nasopharyngeal angiofibroma (NA) is a rare tumor rich in vessels, exclusively occurring in adolescent males. Although NA is a benign tumor, it is a highly vascular lesion that often locally invades the nasal turbinates, nasal septum, and medial pterygoid lamina and extends into the nasal cavity and nasopharynx, even severer into the maxillary, orbit, or intracranial cavity. Surgical removal of NA is of high risk due to the local invasion and extensive vascularity. Therefore, there's an urgent need to develop new treatment regimens for NA. With cutting-edge neural technologies and tools, Creative Biolabs is committed to providing one-stop solutions to assist researchers to discover novel targets and screening new drug candidates.
Fig.1 Common origin and spread patterns of juvenile nasopharyngeal angiofibroma from coronal and sagittal views. (Wilson, 2019)
Mechanism of Action Studies of Nasopharyngeal Angiofibroma
The experts at Creative Biolabs are committed to helping you learn about choroid plexus tumors and exploring the underlying mechanisms for future therapeutic development. The loss of expression of the glutationa-S-transferase M1 (GSTM1) gene is intimately related to the malign transformation of NA, as it is involved in antioxidant cell protection. The overexpression of growth factor similar to insulin II (IGFII) gene, which is a maternal imprinting gene, leads to the dysfunction of the cellular cycle. Besides, the H19 gene imprinting losses and overexpression are also involved in the pathogenesis of NA. In addition, androgen stimulation plays an important role in NA pathogenesis. The mutations of the β-catenine (CTNNB1) gene affect the β-catenine degradation, thus interacting with androgenic signaling and interfering with the tumor suppressor p53 and proto-oncogene MYC.
Nasopharyngeal Angiofibroma Solutions at Creative Biolabs
Creative Biolabs is dedicated to providing a full range of in vitro, in vivo, and ex vivo services to simulate NA models. Our professional discovery and development services can meet your research and development needs for nasopharyngeal angiofibroma. Although surgical resection of NA through the longitudinal splitting of the ridge of the nose is the preferred option. As a result of the extensive vascularity of NA, preoperative embolization can decrease the risk of the operation and postoperative complications. Radiation therapy and hormonal therapy such as androgen receptor inhibitors could be used as adjuvant therapy for NA. Creative Biolabs leverage advanced technologies and tools as well as stable cell cultures and animal modes to help researchers explore novel hormonal therapy, chemotherapy, or cytotoxic agents for NA. Our platforms of brain tumor research support our discovery services, which may facilitate the investigation of MoA involved in NA pathogenesis. Detailed information about our brain tumor platform is demonstrated as follows.
For further nasopharyngeal angiofibroma MoA studies and preclinical agent discovery and development, please feel free to contact us for more detailed information.
Reference
- Wilson, M. N.; et al. Surgical management of juvenile nasopharyngeal angiofibroma. Operative Techniques in Otolaryngology-Head and Neck Surgery. 2019, 30(1): 22-29.
- NeuroMab™ Anti-TREM2 BBB Shuttle Antibody(NRZP-1022-ZP4114) (Cat#: NRZP-1022-ZP4114)
- NeuroMab™ Anti-Alpha Synuclein BBB Shuttle Antibody(NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- NeuroMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- NeuroMab™ Anti-Integrin αvβ8 BBB Shuttle Antibody(NRZP-1222-ZP1218) (Cat#: NRZP-1222-ZP1218)
- NeuroMab™ Anti-EPHB2 Antibody(NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1684) (Cat#: NRP-0422-P1684)
- NeuroMab™ Anti-TREM2 Antibody(NRP-0422-P792) (Cat#: NRP-0422-P792)
- NeuroMab™ Mouse Anti-LRP1 Monoclonal Antibody (CBP3363) (Cat#: NAB-0720-Z6479)
- NeuroMab™ Anti-F-Spondin/SPON1 Antibody, Clone N24875P (CBP11839) (Cat#: NRZP-0822-ZP4740)
- NeuroMab™ Anti-pTau Antibody(NRP-0422-P1719) (Cat#: NRP-0422-P1719)
- Mouse Microglia N9 (Cat#: NCL2110P073)
- iNeu™ Human Neural Stem Cell Line (Cat#: NCL200552ZP)
- Rat Glioma Cell Line C6 (Cat#: NCL2110P346)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- Mouse Glioma Cell Line GL261 (Cat#: NCL-2108P28)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- iNeu™ Human Sensory Neurons (Cat#: NCL-2103-P62)
- Mouse Glioma Cell Line GL-261-Luc (Cat#: NCL-2108P06)
- iNeu™ Human Motor Neurons (Cat#: NCL-2103-P71)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- rAAV-CAG-DIO-G-Flamp1 (Cat#: NRZP-0722-ZP719)
- Dextran, NHS Activated, 40 kDa (Cat#: NRZP-0722-ZP124)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- pAAV-syn-FLEX-jGCaMP8s-WPRE (Cat#: NTA-2106-P066)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- AAV2/9-hEF1a-DIO-mCherry-P2A-TetTox-WPRE-pA (Cat#: NTA-2012-ZP268)
- pAAV-syn-FLEX-jGCaMP8f-WPRE (Cat#: NTA-2106-P064)
- pAAV-syn-FLEX-jGCaMP8m-WPRE (Cat#: NTA-2106-P065)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)