Neuromuscular Junctions and Gap Junctions
Neuromuscular Junction (NMJ)
The neuromuscular junction (NMJ) is a chemical synapse formed between motoneurons and skeletal muscles and covered by Schwann cells (SCs). Upon the arrival of action potentials, the motoneuron terminals release acetylcholine (ACh), which activates ACh receptors (AChRs) of muscle fibers to depolarize the muscle cell and trigger calcium release from the sarcoplasmtic reticulum to initiate muscle contraction. The NMJ is thus essential for our physical mobility and daily life.
- Formation and Structure
NMJ formation involves the differentiation of presynaptic nerve terminals, postsynaptic muscle membranes, and terminal Schwann cells (tSCs). Prior to the arrival of motor nerve terminals, muscle fibers form primitive, small, or thin AChR clusters that are distributed in the central region; this phenomenon is called muscle prepatterning. As the nerve terminals innervate muscle fibers, they induce new clusters and disperse those in nonsynaptic areas; consequently, NMJs are formed in the middle region of muscle fibers. Initially, AChR clusters appear like oval plaques that are often innervated by more than one axon. As the NMJs mature, the plaques become perforated and eventually appear as pretzel-shaped arrays of AChR. Branches are filled with junctional folds that are usually perpendicular to the long axis of the arrays, and AChRs are concentrated at the shoulder areas of junctional fold crests at an estimated concentration of 10,000/μm2. Facing the AChR clusters are active zones of the presynaptic membrane. The NMJ is covered by tSCs that are necessary for its formation, maintenance, and regeneration. As NMJs age, AChR clusters break into fragments that could be poorly innervated and spread in a larger area than that of the original pretzel.
Fig.1 Structures and key molecules of the NMJ. (Li, 2018)
- Function
The NMJ only occupies approximately 0.1% of the surface area of a myofiber but initiates action potential propagation required for force generation and myofiber maintenance. It is a chemical synapse and uses different neurotransmitters in different species: ACh in vertebrates, glutamate in Drosophila, and both ACh and γ-butyric acid in Caenorhabditis elegans. The NMJ is a critical player in transducing motor neuron signals and triggering skeletal muscle contraction in a rapid, reliable, and precise manner. Deficits in NMJ formation and maintenance cause neurological disorders, including congenital myasthenic syndrome (CMS) and myasthenia gravis (MG). Studies of the NMJ have also contributed to our understanding of the structure and function of synapses in the brain.
Gap Junctions
- Structure
Gap junctions are intercellular channels that are composed of integral transmembrane proteins named connexions. A gap junction channel consists of two hemichannels (connexon) which are contributed by two neighboring cells. Each connexon is composed of six connexin proteins. Gap junctions permit the intercellular bidirectional diffusion of nutrients, ions, metabolites, second messengers, such as K+, Ca2+, cAMP, IP3, and other small molecules of about 1000 Da or less than 16A in diameter. There are also hemichannels that remain unpaired after being transported to the membrane until they align with another hemichannel located on an adjacent cell to form a gap junction channel. These hemichannels have important functions too.
Fig.2 General connexin/innexin structures forming gap junctions and “hemichannels”. (Sanchez, 2019)
- Function
Gap junctions allowing intercellular electrotonic and metabolic coupling are expressed in organs and tissues which depend on rapid intercellular signal transfer and communication, including the heart, skin, inner ear, and brain. They play an important role in brain development and maturation and have been implicated in neural stem and progenitor cell proliferation, as well as in cell migration and differentiation. Gap junctions help to coordinate cell firing in neuronal networks and adjust metabolic and transcriptional activities between coupled neurons and astrocytes. In all metazoans, gap junctions function to facilitate direct communication between cells. Gap junctions are expressed abundantly in various tissues where they perform many different tasks; for example, gap junctions form electrical synapses, and contribute to pattern formation establishment, wound healing, regeneration, and embryonic development.
Creative Biolabs has extensive experience in neuro research and has established a comprehensive research platform focusing on neuro-based products as well as relevant services. We integrate all our resources accumulated from years of practice to provide customers with a comprehensive and comfortable one-stop service.
If you are interested in neuro products and relevant services or you have any other questions, please feel free to contact us for more information.
References
- Li, L.; et al. Neuromuscular junction formation, aging, and disorders. Annu Rev Physiol. 2018, 80: 159-188.
- Sanchez, A.; et al. Gap junction channels of innexins and connexins: Relations and computational perspectives. Int J Mol Sci. 2019, 20(10).
- NeuroMab™ Anti-TREM2 Antibody(NRP-0422-P792) (Cat#: NRP-0422-P792)
- NeuroMab™ Mouse Anti-LRP1 Monoclonal Antibody (CBP3363) (Cat#: NAB-0720-Z6479)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- NeuroMab™ Anti-CD32b Antibody(NRP-0422-P1803) (Cat#: NRP-0422-P1803)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- NeuroMab™ Anti-TREM2 BBB Shuttle Antibody(NRZP-1022-ZP4114) (Cat#: NRZP-1022-ZP4114)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P2293) (Cat#: NRP-0422-P2293)
- NeuroMab™ Anti-Integrin αvβ8 BBB Shuttle Antibody(NRZP-1222-ZP1218) (Cat#: NRZP-1222-ZP1218)
- NeuroMab™ Anti-ApoC3 BBB Shuttle Antibody(NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- NeuroMab™ Anti-SEZ6 Antibody(NRP-0422-P517) (Cat#: NRP-0422-P517)
- Human Microglia Cell Line HMC3, Immortalized (Cat#: NCL-2108P38)
- Human Retinal Epithelial Cell ARPE-19 (Cat#: NCL2110P069)
- Human Brain Vascular Pericytes (Cat#: NCL-21P6-015)
- Mouse Midbrain Dopaminergic Neuron Cell MN9D (Cat#: NCL2110P059)
- Mouse Microglia N9 (Cat#: NCL2110P073)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- iNeu™ Human Sensory Neurons (Cat#: NCL-2103-P62)
- iNeu™ Human Neural Stem Cell Line (Cat#: NCL200552ZP)
- Rat Olfactory Ensheathing Cells (Cat#: NRZP-1122-ZP162)
- Human Astrocytes, Immortalized (Cat#: NCL-2105-P182-AM)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- AAV2/2Retro-CAG-DIO-EGFP-2A-TetTox-pA [Neural Tracing] (Cat#: NTA-2012-ZP303)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- Dextran, NHS Activated, 40 kDa (Cat#: NRZP-0722-ZP124)
- pAAV-syn-FLEX-jGCaMP8s-WPRE (Cat#: NTA-2106-P066)
- AAV2/9-hEF1a-DIO-mCherry-P2A-TetTox-WPRE-pA (Cat#: NTA-2012-ZP268)
- rAAV-CAG-DIO-G-Flamp1 (Cat#: NRZP-0722-ZP719)
- AAV-EF1a-mCherry-flex-dtA (Cat#: NRZP-0622-ZP616)
- Dextran-CYanine5.5 (Cat#: NTA-2011-ZP118)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- pAAV-syn-FLEX-jGCaMP8m-WPRE (Cat#: NTA-2106-P065)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)