Retinal Vein Occlusion Drug Discovery Service
No matter what stage of research you are in, Creative Biolabs now offers the most relevant one-stop retinal vein occlusion therapeutic study services to enhance your program efficacy.
Background of RVO
Retinal vein occlusion is the second most common retinal vascular disease after diabetic retinopathy caused by retinal hypoxia. Depending on the location of the occlusion, RVO can be divided into branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO), both of which can eventually lead to vision loss and blindness.
Pathology of RVO
Although RVO is a common disease that has been studied for many years, many aspects of its pathogenesis remain unclear, and RVO affects different systems and tissues simultaneously, so it has not been fully interpreted. It is currently recognized that the pathogenesis of RVO is multifactorial, including age, smoking, diabetes, hypertension, and hyperlipidemia. Glaucoma or other diseases that cause elevated intraocular pressure may lead to the onset of RVO, and some risk factors related to hemostasis usually also lead to the occurrence of RVO.
Fig 1. Retinal oxygen saturation measurement can accurately define RVO. (Osaka, 2019)
Therapeutic Approaches for RVO
Diagnosis of RVO is similar to that of other ophthalmic diseases, both can be achieved by angiography or OCT. There are several viable RVO therapeutic options, but most have been developed to relieve and end vision loss and its complications.
- Surgery
A chorioretinal anastomosis can be performed by creating a connection between the retina and the choroidal vein and bypassing the site of venous outflow obstruction in CRVO. The curative effect of this technology is relatively promising, but the incidence of side effects is also high.
- Laser therapy
Laser therapy is still the standard treatment for RVO, but only modest functional improvement has been shown in BRVO, so it is generally used in combination with other treatments.
- Intravitreal therapy
Intravitreal therapy is currently carried out in two ways, one is mostly focused on vascular endothelial growth factor (VEGF). VEGF is the main regulator of intraocular angiogenesis and vascular permeability in physiological and pathological processes. Targeted drugs aiming VEGF are undergoing development. Another class of intravitreal treatment options is corticosteroid, which inhibits not only VEGF but also various proinflammatory mediators that may contribute to RVO.
Our Services
- In Vitro Services
- In Vivo Services
- Ex Vivo Services
- Discovery Services
- Development Services
Creative Biolabs is well equipped and versed in RVO therapeutic solutions to assist our customers’ RVO research and project development. Our scientists have established an advanced RVO research platform to support the discovery of RVO mechanisms of action and therapeutic approaches. We are the best partner for your identification, validation, and therapeutic projects, so please contact us and discuss your needs, for us to deliver an appealing proposal.
Reference
- Osaka, R.; et al. Retinal oximetry in branch retinal vein occlusion. Acta Ophthalmol. 2019, 97: e896-e901.
- NeuroMab™ Anti-Alpha Synuclein Antibody(NRP-0422-P614) (Cat#: NRP-0422-P614)
- NeuroMab™ Anti-Alpha Synuclein BBB Shuttle Antibody(NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1684) (Cat#: NRP-0422-P1684)
- NeuroMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- NeuroMab™ Anti-SEZ6 Antibody(NRP-0422-P515) (Cat#: NRP-0422-P515)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P2275) (Cat#: NRP-0422-P2275)
- NeuroMab™ Mouse Anti-LRP1 Monoclonal Antibody (CBP3363) (Cat#: NAB-0720-Z6479)
- NeuroMab™ Anti-GARP Antibody(NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- NeuroMab™ Anti-GD2 Antibody(NRZP-1222-ZP767) (Cat#: NRZP-1222-ZP767)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1686) (Cat#: NRP-0422-P1686)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- Human Blood Brain Barrier Model (Cat#: NCL-2103-P187)
- Human Microglia Cell Line HMC3, Immortalized (Cat#: NCL-2108P38)
- Rat Glioma Cell Line C6 (Cat#: NCL2110P346)
- Green Fluorescent Alpha-synuclein SH-SY5Y Cell Line (Cat#: NCL2110P209)
- Rat Microglia Cell Line HAPI, Immortalized (Cat#: NCL2110P015)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- Human Brain Astroblastoma U-87 MG (Cat#: NCL2110P117)
- Human Astrocytes, Immortalized (Cat#: NCL-2105-P182-AM)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- pAAV-syn-FLEX-jGCaMP8f-WPRE (Cat#: NTA-2106-P064)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- Dextran-CYanine5.5 (Cat#: NTA-2011-ZP118)
- pAAV-syn-FLEX-jGCaMP8s-WPRE (Cat#: NTA-2106-P066)
- AAV2/2Retro-CAG-DIO-EGFP-2A-TetTox-pA [Neural Tracing] (Cat#: NTA-2012-ZP303)
- AAV-EF1a-mCherry-flex-dtA (Cat#: NRZP-0622-ZP616)
- PRV-CAG-EGFP (Cat#: NTA-2011-ZP14)
- Dextran, NHS Activated, 40 kDa (Cat#: NRZP-0722-ZP124)
- AAV2/9-hSyn-Flpo-EGFP-WPRE-pA (Cat#: NTA-2012-ZP149)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)