Retinal Vein Occlusion Drug Discovery Service
No matter what stage of research you are in, Creative Biolabs now offers the most relevant one-stop retinal vein occlusion therapeutic study services to enhance your program efficacy.
Background of RVO
Retinal vein occlusion is the second most common retinal vascular disease after diabetic retinopathy caused by retinal hypoxia. Depending on the location of the occlusion, RVO can be divided into branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO), both of which can eventually lead to vision loss and blindness.
Pathology of RVO
Although RVO is a common disease that has been studied for many years, many aspects of its pathogenesis remain unclear, and RVO affects different systems and tissues simultaneously, so it has not been fully interpreted. It is currently recognized that the pathogenesis of RVO is multifactorial, including age, smoking, diabetes, hypertension, and hyperlipidemia. Glaucoma or other diseases that cause elevated intraocular pressure may lead to the onset of RVO, and some risk factors related to hemostasis usually also lead to the occurrence of RVO.
Fig 1. Retinal oxygen saturation measurement can accurately define RVO. (Osaka, 2019)
Therapeutic Approaches for RVO
Diagnosis of RVO is similar to that of other ophthalmic diseases, both can be achieved by angiography or OCT. There are several viable RVO therapeutic options, but most have been developed to relieve and end vision loss and its complications.
- Surgery
A chorioretinal anastomosis can be performed by creating a connection between the retina and the choroidal vein and bypassing the site of venous outflow obstruction in CRVO. The curative effect of this technology is relatively promising, but the incidence of side effects is also high.
- Laser therapy
Laser therapy is still the standard treatment for RVO, but only modest functional improvement has been shown in BRVO, so it is generally used in combination with other treatments.
- Intravitreal therapy
Intravitreal therapy is currently carried out in two ways, one is mostly focused on vascular endothelial growth factor (VEGF). VEGF is the main regulator of intraocular angiogenesis and vascular permeability in physiological and pathological processes. Targeted drugs aiming VEGF are undergoing development. Another class of intravitreal treatment options is corticosteroid, which inhibits not only VEGF but also various proinflammatory mediators that may contribute to RVO.
Our Services
- In Vitro Services
- In Vivo Services
- Ex Vivo Services
- Discovery Services
- Development Services
Creative Biolabs is well equipped and versed in RVO therapeutic solutions to assist our customers’ RVO research and project development. Our scientists have established an advanced RVO research platform to support the discovery of RVO mechanisms of action and therapeutic approaches. We are the best partner for your identification, validation, and therapeutic projects, so please contact us and discuss your needs, for us to deliver an appealing proposal.
Reference
- Osaka, R.; et al. Retinal oximetry in branch retinal vein occlusion. Acta Ophthalmol. 2019, 97: e896-e901.
- NeuroMab™ Anti-ApoC3 BBB Shuttle Antibody(NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- NeuroMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- NeuroMab™ Anti-TREM2 BBB Shuttle Antibody(NRZP-1022-ZP4114) (Cat#: NRZP-1022-ZP4114)
- NeuroMab™ Anti-Alpha Synuclein BBB Shuttle Antibody(NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- NeuroMab™ Anti-GD2 Antibody(NRZP-1222-ZP767) (Cat#: NRZP-1222-ZP767)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1684) (Cat#: NRP-0422-P1684)
- NeuroMab™ Anti-Amyloid Beta 1-15 Antibody(NRP-0422-P867) (Cat#: NRP-0422-P867)
- NeuroMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- NeuroMab™ Anti-CD32b Antibody(NRP-0422-P1803) (Cat#: NRP-0422-P1803)
- NeuroMab™ Anti-ApoC3 BBB Shuttle Antibody(NRZP-1022-ZP3503) (Cat#: NRZP-1022-ZP3503)
- Mouse Retinal Ganglion Cells (Cat#: NCL2110P145)
- iNeu™ Human Oligodendrocyte Progenitor Cells (OPCs) (Cat#: NCL-2103-P49)
- Green Fluorescent Alpha-synuclein SH-SY5Y Cell Line (Cat#: NCL2110P209)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- Sf295 Human Glioblastoma Cells (Cat#: NCL-2108P180)
- Human Astrocytes, Immortalized (Cat#: NCL-2105-P182-AM)
- Human Glioblastoma Cell Line SF126 (Cat#: NCL-2108P35)
- Mouse Glioma Cell Line GL-261-Luc (Cat#: NCL-2108P06)
- Rat Muller Cell (Cat#: NCL2110P040)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- pAAV-hSyn-DIO-XCaMP-R-WPRE (Cat#: NTA-2012AD-P508)
- pAAV-syn-FLEX-jGCaMP8f-WPRE (Cat#: NTA-2106-P064)
- rAAV-E-SARE-Cre-ERT2-PEST-WPRE-hGH polyA (Cat#: NTA-2010-TT342)
- Dextran-CYanine5.5 (Cat#: NTA-2011-ZP118)
- AAV-mDLX-CRE-tdTomato (Cat#: NRZP-0622-ZP721)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- AAV2/9-hSyn-Flpo-EGFP-WPRE-pA (Cat#: NTA-2012-ZP149)
- AAV-EF1a-mCherry-flex-dtA (Cat#: NRZP-0622-ZP616)
- pAAV-syn-FLEX-jGCaMP8s-WPRE (Cat#: NTA-2106-P066)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)