Action Potentials, Axons, and Dendrites
Action Potential Introduction
In the past decades, Physiologists have always been puzzled by how nerves work to their target tissues. Based on the rapid development of electrophysiology, people have discovered the electrical activity of neurons. Scientists have observed that signal transmission can be mediated by action potential from neurons to the responding tissues. Action potential refers to rapid, sudden, and short-lived changes in the membrane. It is produced in different cell types, such as endocrine cells, muscle cells, neurons, and even plant cells.
Between two neighboring neurons, the action potential may lead to the release of chemical neurotransmitters between them. Chemical neurotransmitters can stimulate or inhibit neurons from firing their action potentials. Scientists also found that the action potentials are generated based on the balance of excitatory and inhibitory inputs to neurons in humans. Generally speaking, based on the function of both excitability and inhibitory properties, an action potential will occur when the membrane potential of a neuron reaches about -50 mV.
Fig.1 Structure of a typical neuron.
Introduction of Axons, and Dendrites
The axon is where the action potential is generated, and it is the spike initiation zone for action potentials. With the long and thin structure, it serves as the transmission part of the neuron. After initiation, action potentials travel down axons, which leads to the release of neurotransmitters. This area is characterized by a high concentration of voltage-activated sodium channels.
The dendrite is the receiving part of the neuron to collect synaptic inputs from axons. The protrusions, also known as dendritic spines, are designed to capture the neurotransmitters released by the presynaptic neuron. In general, there are ligand-gated ion channels with high concentrations. The total amount of dendritic inputs determines whether the neuron will fire an action potential.
Functions of Action Potentials
As the basic units of communication between neurons, action potentials play a role in a series of cell types. In neurons, action potentials play an important role in the cell communication. The action potential is the start in the chain of events, which lead to a contraction in muscle cells. In beta cells of the pancreas, the release of insulin is caused by the action potential.
As a global company with extensive scientific expertise, we guide clients from discovery to approval and provide continuity for their entire program. Now we can provide a series of services and products for neuroscience research. If you are interested in our services and products, please do not hesitate to contact us for more detailed information.
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- NeuroMab™ Anti-CD20 Antibody(NRP-0422-P1230) (Cat#: NRP-0422-P1230)
- NeuroMab™ Anti-TREM2 Antibody(NRP-0422-P792) (Cat#: NRP-0422-P792)
- NeuroMab™ Anti-SEZ6 Antibody(NRP-0422-P517) (Cat#: NRP-0422-P517)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1686) (Cat#: NRP-0422-P1686)
- NeuroMab™ Anti-pTau Antibody(NRP-0422-P1719) (Cat#: NRP-0422-P1719)
- NeuroMab™ Anti-F-Spondin/SPON1 Antibody, Clone N24875P (CBP11839) (Cat#: NRZP-0822-ZP4740)
- NeuroMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- NeuroMab™ Anti-ApoC3 BBB Shuttle Antibody(NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- NeuroMab™ Anti-GARP Antibody(NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- Immortalized Human Cerebral Microvascular Endothelial Cells (Cat#: NCL-2108-P020)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Mouse Microglia N9 (Cat#: NCL2110P073)
- Human Brain Astroblastoma U-87 MG (Cat#: NCL2110P117)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- Human Astrocytes, Immortalized (Cat#: NCL-2105-P182-AM)
- Mouse Microglia from C57BL/6 (Cat#: NCL-21P6-082)
- Mouse Microglia Cell Line BV-2, Immortalized (Cat#: NCL2110P153)
- Rat Glioma Cell Line C6 (Cat#: NCL2110P346)
- Human Retinal Epithelial Cell ARPE-19 (Cat#: NCL2110P069)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- PRV-CAG-EGFP (Cat#: NTA-2011-ZP14)
- pAAV-EF1a-DIO-EGFP-WPRE (Cat#: NTA-2012AD-P285)
- AAV-mDLX-CRE-tdTomato (Cat#: NRZP-0622-ZP721)
- pAAV-syn-FLEX-jGCaMP8m-WPRE (Cat#: NTA-2106-P065)
- pAAV-syn-FLEX-jGCaMP8f-WPRE (Cat#: NTA-2106-P064)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- Dextran, Cy5 Labeled, 2000 kDa (Cat#: NRZP-0722-ZP22)
- pAAV-syn-FLEX-jGCaMP8s-WPRE (Cat#: NTA-2106-P066)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)