Receptor Occupancy (RO) Assay
Measuring the receptor occupancy (RO) of a biotherapeutic agent bound to its pharmacological target has become a critical component and an important part of the analysis of drug pharmacokinetics during neuropharmaceutical development. RO analysis helps to determine the minimum biological effect level of biotherapeutics to predict optimal dosage and dosing schedule. RO analysis data also can be used to evaluate drug safety, since the maximum RO over a long period of time has been used as a marker of overdose, leading to serious side effects and toxicity. Creative Biolabs provides reliable and advanced RO Assay services with various novel approaches for our clients all over the world.
Background of RO Model
RO model is an important component of receptor theory in pharmacology. It systematically applies mathematical methods that are often used in enzyme kinetics to the effect of chemical substances on tissues to quantify the activity of drugs on receptors. The relationship between the observable effects and drug concentration is quantified and the drug effect is linked to the proportion of receptors that the drug occupies at equilibrium. The RO model assumes that the magnitude of the drug response is proportional to the amount of drug binding to the receptor, and once all receptors are in equilibrium, the maximal drug response will be triggered.
RO assays can be accomplished simply by measuring the number of cell surface receptors bound to the drug through radiolabeling test compounds or Western Blotting, or by measuring receptor internalization and shedding to obtain more detailed data. The final result is a proportional curve of the unbound or free receptor, total available receptor and/or bound receptor. RO analysis was originally used to evaluate the drug efficacy of targeted tumor cell therapy, and then this method has been widely developed and used for clinical evaluation of drug efficacy and safety. Many studies currently use dopamine D2/3 RO data to support antipsychotic drug development for Alzheimer's disease.
Fig 1. Direct assessment of receptor binding using fluorescently labeled anti-drug antibodies. (Stewart, et al., 2016)
Our Receptor Occupancy Assay Services
Thanks to our professional R&D team, Creative Biolabs can measure the percentage bound to a specific ligand out of the total number of available target receptors, and provide you with reliable, robust, and reproducible RO relationships and duration data to assist you in the prediction and studies of drug pharmacokinetics, pharmacological efficacy, as well as toxicology. Please contact us with our specialist for further information.
Reference
- Stewart, J.J.; et al. Role of receptor occupancy assays by flow cytometry in drug development. Cytometry Part B Clinical Cytometry the Journal of the International Society for Analytical Cytology, 2016, 90: 110-116.
- NeuroMab™ Anti-GARP Antibody(NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- NeuroMab™ Anti-EPHB2 Antibody(NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- iNeuMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- iNeuMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- NeuroMab™ Anti-TREM2 Antibody(NRP-0422-P792) (Cat#: NRP-0422-P792)
- NeuroMab™ Anti-Amyloid Beta 1-15 Antibody(NRP-0422-P867) (Cat#: NRP-0422-P867)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1760) (Cat#: NRP-0422-P1760)
- NeuroMab™ Anti-ApoC3 BBB Shuttle Antibody(NRZP-1022-ZP3503) (Cat#: NRZP-1022-ZP3503)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- Mouse Midbrain Dopaminergic Neuron Cell MN9D (Cat#: NCL2110P059)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Green Fluorescent BACE1 Cell Lines (Cat#: NCL2110P214)
- Human Retinal Epithelial Cell ARPE-19 (Cat#: NCL2110P069)
- Human Dental Pulp Stem Cells (Cat#: NRZP-1122-ZP113)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- iNeu™ Human Neural Stem Cell Line (Cat#: NCL200552ZP)
- Mouse Glioma Cell Line GL261 (Cat#: NCL-2108P28)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Mouse Glioma Cell Line GL-261-Luc (Cat#: NCL-2108P06)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- pAAV-syn-FLEX-jGCaMP8f-WPRE (Cat#: NTA-2106-P064)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- pAAV-hSyn-DIO-XCaMP-R-WPRE (Cat#: NTA-2012AD-P508)
- pAAV-syn-FLEX-jGCaMP8m-WPRE (Cat#: NTA-2106-P065)
- Dextran, Cy5 Labeled, 2000 kDa (Cat#: NRZP-0722-ZP22)
- pAAV-syn-jGCaMP8m-WPRE (Cat#: NTA-2106-P062)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- pAAV-syn-FLEX-jGCaMP8s-WPRE (Cat#: NTA-2106-P066)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)