Receptor Occupancy (RO) Assay
Measuring the receptor occupancy (RO) of a biotherapeutic agent bound to its pharmacological target has become a critical component and an important part of the analysis of drug pharmacokinetics during neuropharmaceutical development. RO analysis helps to determine the minimum biological effect level of biotherapeutics to predict optimal dosage and dosing schedule. RO analysis data also can be used to evaluate drug safety, since the maximum RO over a long period of time has been used as a marker of overdose, leading to serious side effects and toxicity. Creative Biolabs provides reliable and advanced RO Assay services with various novel approaches for our clients all over the world.
Background of RO Model
RO model is an important component of receptor theory in pharmacology. It systematically applies mathematical methods that are often used in enzyme kinetics to the effect of chemical substances on tissues to quantify the activity of drugs on receptors. The relationship between the observable effects and drug concentration is quantified and the drug effect is linked to the proportion of receptors that the drug occupies at equilibrium. The RO model assumes that the magnitude of the drug response is proportional to the amount of drug binding to the receptor, and once all receptors are in equilibrium, the maximal drug response will be triggered.
RO assays can be accomplished simply by measuring the number of cell surface receptors bound to the drug through radiolabeling test compounds or Western Blotting, or by measuring receptor internalization and shedding to obtain more detailed data. The final result is a proportional curve of the unbound or free receptor, total available receptor and/or bound receptor. RO analysis was originally used to evaluate the drug efficacy of targeted tumor cell therapy, and then this method has been widely developed and used for clinical evaluation of drug efficacy and safety. Many studies currently use dopamine D2/3 RO data to support antipsychotic drug development for Alzheimer's disease.
Fig 1. Direct assessment of receptor binding using fluorescently labeled anti-drug antibodies. (Stewart, et al., 2016)
Our Receptor Occupancy Assay Services
Thanks to our professional R&D team, Creative Biolabs can measure the percentage bound to a specific ligand out of the total number of available target receptors, and provide you with reliable, robust, and reproducible RO relationships and duration data to assist you in the prediction and studies of drug pharmacokinetics, pharmacological efficacy, as well as toxicology. Please contact us with our specialist for further information.
Reference
- Stewart, J.J.; et al. Role of receptor occupancy assays by flow cytometry in drug development. Cytometry Part B Clinical Cytometry the Journal of the International Society for Analytical Cytology, 2016, 90: 110-116.
- NeuroMab™ Anti-GARP Antibody(NRP-0422-P1639) (Cat#: NRP-0422-P1639)
- NeuroMab™ Anti-F-Spondin/SPON1 Antibody, Clone N24875P (CBP11839) (Cat#: NRZP-0822-ZP4740)
- NeuroMab™ Anti-EPHB2 Antibody(NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- NeuroMab™ Anti-Integrin αvβ8 BBB Shuttle Antibody(NRZP-1222-ZP1218) (Cat#: NRZP-1222-ZP1218)
- NeuroMab™ Anti-CD20 Antibody(NRP-0422-P1230) (Cat#: NRP-0422-P1230)
- NeuroMab™ Anti-TNFα BBB Shuttle Antibody(NRZP-1022-ZP4105) (Cat#: NRZP-1022-ZP4105)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1760) (Cat#: NRP-0422-P1760)
- NeuroMab™ Anti-Alpha Synuclein Antibody(NRP-0422-P614) (Cat#: NRP-0422-P614)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- NeuroMab™ Anti-CD32b Antibody(NRP-0422-P1803) (Cat#: NRP-0422-P1803)
- iNeu™ Human Sensory Neurons (Cat#: NCL-2103-P62)
- Rat Muller Cell (Cat#: NCL2110P040)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- Green Fluorescent Alpha-synuclein SH-SY5Y Cell Line (Cat#: NCL2110P209)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- iNeu™ Retinal Pigment Epithelial Cells (RPE) (Cat#: NRZP-0323-ZP92)
- iNeu™ Human Schwann Cell (Cat#: NCL-2103-P63)
- Human Retinal Epithelial Cell ARPE-19 (Cat#: NCL2110P069)
- Green Fluorescent Tau SH-SY5Y cell Line (Cat#: NCL2110P219)
- Rat Glioma Cell Line C6 (Cat#: NCL2110P346)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- AAV-EF1a-mCherry-flex-dtA (Cat#: NRZP-0622-ZP616)
- pAAV-syn-jGCaMP8m-WPRE (Cat#: NTA-2106-P062)
- AAV2/9-hEF1a-fDIO-eNpHR 3.0-mCherry-WPRE-pA (Cat#: NTA-2012-ZP78)
- AAV-mDLX-CRE-tdTomato (Cat#: NRZP-0622-ZP721)
- Dextran, NHS Activated, 40 kDa (Cat#: NRZP-0722-ZP124)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- AAV2/9-hEF1a-DIO-mCherry-P2A-TetTox-WPRE-pA (Cat#: NTA-2012-ZP268)
- pAAV-syn-jGCaMP8f-WPRE (Cat#: NTA-2106-P061)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)