Alpha-synuclein Targeting Therapies Study
Normal alpha-synuclein (α-syn) plays an essential role in brain cell communication, and growing evidence indicates that toxic forms of α-syn are closely related to Parkinson's disease (PD). Therefore, there is great interest in targeting α-syn to block the progression of PD. As a renowned innovative biotechnology company, Creative Biolabs has extensive experience in neuroscience research. With our advanced platform and extensive expertise, we are committed to developing custom animal models and suitable approaches to help you further understand the mechanism of action (MoA) of α-syn in PD.
α-syn and PD
PD is one of the most common neurodegenerative diseases worldwide. However, there is no effective way to prevent or treat PD at present. It is worth noting that increasing evidence showed that elevated α-syn protein levels were responsible for the pathogenesis of PD. α-syn is an abundant 14 kDa protein, encoded by the SNCA gene, consisting of 140 amino acids. α-syn consists of three domains: an N-terminal lipid-binding α-helix, a non-amyloid component (NAC), and an acidic C-terminal tail. Aggregation of α-syn and accumulation in cytoplasmic inclusions called Lewy bodies are pathological hallmarks of PD, revealing that α-syn plays a central role in the pathogenesis of PD.
Therapeutic Strategies Targeting α-Syn for PD
To date, α-syn is one of the most promising targets for PD. There are various approaches to treating disease by targeting the diffusion, production, aggregation, and increased intracellular clearance of α-syn. In addition, manipulation of SNCA levels has shown beneficial effects.
Fig.1 Therapeutic strategies targeting α-Syn for PD treatment. (Fields, et al., 2019)
- Decreasing the expression of α-syn
Reducing α-syn expression affects the amount of α-Syn protein available for aggregation and pathway disruption. Studies have shown that manipulation of α-syn levels through gene silencing and RNA interference is beneficial for normalizing α-syn expression and improving motor function. Furthermore, DNA methylation of SNCA intron 1 is a regulator of α-syn transcription, and methylation levels are different in PD compared to controls, thus providing a target for tight control of α-syn expression levels.
- Prevention of α-syn aggregation
Targeting α-syn aggregation using specific molecules is an attractive strategy. Various compounds proved to be effective in inhibiting α-syn aggregation in PD. For example, heat shock proteins (HSPs) prevent protein aggregation and toxicity under conditions of cellular stress. Manipulation of the expression of HSPs in vitro and in vivo models is critical in regulating α-syn aggregation and toxicity. Furthermore, several lines of evidence suggest that various novel oligomer modulators are effective in inhibiting oligomer formation in mouse models of PD.
- Immunotherapies targeting α-syn
The development of vaccines targeting the N or C-terminus of α-syn or its aggregated forms is an active immunization approach. It was reported that various α-syn mimetic peptides have shown good safety and efficacy in PD. What's more, long-term intravenous administration of the antibody will prevent the formation and spread of pathogenic α-syn aggregates and may alter disease progression.
If you have any difficulties in the project of α-syn targeting therapies study, please contact us in time for reasonable advice and professional assistance.
Reference
- Fields, C.R.; et al. Targeting alpha-synuclein as a therapy for Parkinson's disease. Frontiers in molecular neuroscience. 2019, 12: 299.
- NeuroMab™ Anti-Alpha Synuclein Antibody(NRP-0422-P614) (Cat#: NRP-0422-P614)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1760) (Cat#: NRP-0422-P1760)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- NeuroMab™ Anti-CD20 Antibody(NRP-0422-P1230) (Cat#: NRP-0422-P1230)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- NeuroMab™ Anti-Tau Antibody(NRP-0422-P1684) (Cat#: NRP-0422-P1684)
- NeuroMab™ Anti-TREM2 Antibody(NRP-0422-P792) (Cat#: NRP-0422-P792)
- NeuroMab™ Anti-EPHB2 Antibody(NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- NeuroMab™ Anti-CD32b Antibody(NRP-0422-P1803) (Cat#: NRP-0422-P1803)
- Mouse Glioma Cell Line GL-261-Luc (Cat#: NCL-2108P06)
- Green Fluorescent BACE1 Cell Lines (Cat#: NCL2110P214)
- Mouse Microglia N9 (Cat#: NCL2110P073)
- Human Blood Brain Barrier Model (Cat#: NCL-2103-P187)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- Rat Immortalized Retinal Muller Cell Line rMC-1 (Cat#: NCL-2106-S93)
- Immortalized Human Cerebral Microvascular Endothelial Cells (Cat#: NCL-2108-P020)
- Human Retinal Epithelial Cell ARPE-19 (Cat#: NCL2110P069)
- Mouse Microglia Cell Line BV-2, Immortalized (Cat#: NCL2110P153)
- iNeu™ Human Oligodendrocyte Progenitor Cells (OPCs) (Cat#: NCL-2103-P49)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Dextran-FITC (Cat#: NTA-2011-ZP110)
- AAV2/9-hSyn-Flpo-EGFP-WPRE-pA (Cat#: NTA-2012-ZP149)
- AAV-EF1a-mCherry-flex-dtA (Cat#: NRZP-0622-ZP616)
- PRV-CAG-EGFP (Cat#: NTA-2011-ZP14)
- pAAV-hSyn-DIO-XCaMP-R-WPRE (Cat#: NTA-2012AD-P508)
- rAAV-CAG-DIO-G-Flamp1 (Cat#: NRZP-0722-ZP719)
- pAAV-EF1a-DIO-EGFP-WPRE (Cat#: NTA-2012AD-P285)
- pAAV-syn-jGCaMP8s-WPRE (Cat#: NTA-2106-P063)
- pAAV-syn-jGCaMP8m-WPRE (Cat#: NTA-2106-P062)
- Dextran, NHS Activated, 40 kDa (Cat#: NRZP-0722-ZP124)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)