Blood Brain Barrier Inhibitors: Mercury
Introduction to Mercury
Mercury is a type of heavy metal that has been proven its significant role in affecting the function of the nervous system, the stomach, the kidneys, as well as intestines. Up to now, it has been classified into several types, such as inorganic mercury, elemental mercury, organic mercury, and organic or inorganic mercury according to the different oxidation forms. In general, all types of mercury are toxic even at trace doses. Moreover, pilot studies have shown that the high level of some organic mercury molecules can be treated as neurotoxins that induce abnormalities in the function of the nerve center. The common symptoms of toxicities caused by mercury include but are not limited to, nausea, dizziness, difficulty walking, or loss of nerve function.
Fig.1 Interrelated association among MeHg-induced oxidative stress, Ca2+ and glutamate dyshomeostasis. (Farina, 2011)
Mercury-Induced Neurotoxicity
Organic mercury is typically combined with the sulfhydryl group in the L-cysteine, which is then demethylated to form inorganic mercury. Studies have shown that inorganic mercury can not pass through the blood-brain barrier, so it accumulates in large quantities in the brain and eventually causes neurological damage. Furthermore, a large number of data have also indicated that mercury can affect the process of cell differentiation, cell growth, and tissue apoptosis. In addition, recent reports have revealed that mercury-induced neurotoxicity is associated with changes in reactive oxygen species (ROS) levels. The combination of mercury and sulfhydryl groups consumes large amounts of glutathione, which are ultimately converted into compounds. The formation of these compounds inhibits the activity of glutathione reductase, mitochondrial, and glutathione peroxidase, promoting the production of neurotoxins in humans.
Besides, organic mercury can increase the expression level of NMDA receptors, thus promoting the expression of calcium ions. Increased levels of calcium not only help mitochondria to produce ROS but also activate nNOS to produce large amounts of NO. Also, in recent studies, a battery of animal models has been generated for analyzing the role of methylmercury (MeHg) in the blood-brain barrier (BBB). The results have suggested that exposure to MeHg can lead to the increased expression level of vascular endothelial growth factor (VEGF) and the BBB damage in mice. Further studies are still needed to determine whether treatment with VEGF can improve mercury-induced toxicity.
Creative Biolabs is a leader in the field of neurotoxins studies and has focused on mercury-based neurotoxicity research services for years. We have experienced experts and advanced platforms that can provide excellent services. If you are interested in our services, please contact us for more details.
Reference
- Farina, M.; et al. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life sciences. 2011, 89(15-16): 555-563.
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P2275) (Cat#: NRP-0422-P2275)
- iNeuMab™ Anti-EPHB2 Antibody (NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P1683) (Cat#: NRP-0422-P1683)
- iNeuMab™ Anti-F-Spondin/SPON1 Antibody, Clone 3F4 (Cat#: NRZP-0822-ZP4740)
- iNeuMab™ Anti-Alpha Synuclein BBB Shuttle Antibody (NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- iNeuMab™ Anti-ApoC3 BBB Shuttle Antibody (NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- iNeuMab™ Rabbit Anti-LRRK2 Monoclonal Antibody (CBP1887) (Cat#: NAB-08-PZ735)
- iNeuMab™ Anti-Alpha Synuclein Antibody (NRP-0422-P614) (Cat#: NRP-0422-P614)
- iNeuMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- iNeuMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- Mouse Retinal Ganglion Cells (Cat#: NCL2110P145)
- iNeu™ Human Sensory Neurons (Cat#: NCL-2103-P62)
- Immortalized Human Cerebral Microvascular Endothelial Cells (Cat#: NCL-2108-P020)
- iNeu™ Human Oligodendrocyte Progenitor Cells (OPCs) (Cat#: NCL-2103-P49)
- Green Fluorescent BACE1 Cell Lines (Cat#: NCL2110P214)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- Human Blood Brain Barrier Model (Cat#: NCL-2103-P187)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- Mouse Microglia N9 (Cat#: NCL2110P073)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)