Motor System
Introduction to Motor System
A motor system is a group of complex structures that plays an important role in regulating body movement. Up to now, the motor systems have been classified into several levels, including but not limited, the brain stem, the cerebral cortex, the spinal cord, as well as the motor cortex. Moreover, two main loops, the basal ganglia, and the cerebellum have been identified and can interact with the motor system by linking to the thalamus. Previous studies have shown that the motor system can help design and carry out the movement plan, and it is involved in many feedback and fine-tuning mechanisms. Dysfunction of any part of the motor system can cause different levels of motor impairment or loss of function. A wide variety of ascending and descending pathways to the brainstem and spinal cord have been confirmed to be essential to control body balance and movements. Dysfunction of any part of this system can lead to varying degrees of motor impairment, including complete loss of function. Severe Dyskinesia is the last stage of many common degenerative and progressive neurological diseases.
Spinal Control of the Movement
Normally, the motor system is made up of all muscle tissues and their associated neurons. Muscles can be divided into two key subtypes: smooth muscle and striated muscle. Smooth muscle is regulated by the nerve fibers of the autonomic nervous system and skeletal muscle is controlled by the somatic nervous system. Muscles have synergic and antagonistic muscles that can be used to coordinate two types of spinal control of the movement: stretching and flexing. In particular, each muscle fiber is controlled by alpha motor neurons. For example, small motor units can be activated to mediate detailed movements. Meanwhile, muscle fibers are usually surrounded by a cell membrane named sarcolemma. The structure of myofibril can affect the action potential of the sarcolemma, and thus it is used to control the release of calcium ions in the sarcoplasmic reticulum and the contraction of the muscle. Myofibril can be divided into several parts by Z line. During muscle contraction, the skin filaments in myofibril slide along the thick filaments to make the Z lines stick together.
Brain Control of Movement
The mechanism of the brain’s control of movement has been studied for more than a century. Early studies have focused on the association between brain injury and motor impairment. Currently, many attempts have been made to develop advanced techniques for analyzing specific motor pathways in neuroscience. For example, electroencephalography (EEG) has been designed and broadly used for visualizing the neural activity of the brain during a motor task. In addition, the changes in brain networks in motor-related regions have been investigated by measuring whole-brain magnetoencephalography (MEG) signals. The data have illustrated that the connectivity of the brain network increases in the movement plan state. It was only the cerebellum and basal ganglia that showed increased connectivity during movement, while other areas associated with exercise showed decreased connectivity. Till now, it has become a hot topic to predict the brain-computer interface (BCI) of movement and to provide new insights on the brain control of movement.
Creative Biolabs is a world-leading services provider in the field of motor system development. We are dedicated to providing customers with different types of nervous systems to meet different purposes of projects. If you are interested in our services, please contact us to discuss your project.
- iNeuMab™ Rabbit Anti-LRRK2 Monoclonal Antibody (CBP1887) (Cat#: NAB-08-PZ735)
- iNeuMab™ Mouse Anti-LRP1 Monoclonal Antibody (CBP3363) (Cat#: NAB-0720-Z6479)
- iNeuMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- iNeuMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- iNeuMab™ Anti-F-Spondin/SPON1 Antibody, Clone 3F4 (Cat#: NRZP-0822-ZP4740)
- Mouse Anti-Human α-Synuclein Phospho (Tyr39) (CBP3706) (Cat#: NAB201250LS)
- iNeuMab™ Rabbit Anti-Alpha-synuclein (CBP1631) (Cat#: NAB-08-PZ079)
- Rat Retinal Muller Cell Line, Immortalized (Cat#: NCL-21P6-192)
- Human Retinal Epithelial Cell ARPE-19 (Cat#: NCL2110P069)
- Human Brain Vascular Adventitial Fibroblasts (Cat#: NCL-21P6-014)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- Human Dental Pulp Stem Cells (Cat#: NRZP-1122-ZP113)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- Mouse Midbrain Dopaminergic Neuron Cell MN9D (Cat#: NCL2110P059)
- Rat Immortalized Retinal Muller Cell Line rMC-1 (Cat#: NCL-2106-S93)
- Mouse Microglia N9 (Cat#: NCL2110P073)
- Mouse Glioma Cell Line GL261 (Cat#: NCL-2108P28)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- Human superoxide dismutase 1, soluble (SOD1) (NM_000454) ORF clone, TurboGFP Tagged (Cat#: NEP-0521-R0748)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Human presenilin 1 (PSEN1), transcript variant 2 (NM_007318) ORF clone, TurboGFP Tagged (Cat#: NEP-0421-R0140)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-NAGLU BBB Shuttle Protein (Cat#: NRZP-0423-ZP506)
- NeuroPro™ Anti-PON1 BBB Shuttle Protein (Cat#: NRZP-0423-ZP507)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
