Creative Biolabs

Other Neuroscience Methods

Other Neuroscience Methods

Techniques of neuroscience are a hot area of contemporary medical research, and it is also full of controversies. The purpose of neurotechnology is to use tools and instruments to directly connect to the nervous system to realize the transmission of human brain information to visual machines. These tools include electrodes, optical capture, or computers, which are designed to record signals from the brain and "transform" them into technical control commands or manipulate brain activity by applying electrical or optical stimulation.

Uses of Neuroscience Technology

The monitoring and interference of brain activity based on different neurotechnologies can be used as an important means for the diagnosis and treatment of brain diseases. For example, nerve electrodes are in the form of electrode caps, which non-invasively pick up the electric field generated by the active brain for communication in the computer activities of patients with amyotrophic lateral sclerosis (ALS). Besides, implantable neurotechnology, such as high-resolution grid electrodes, can be placed directly on the surface of the brain to locate the pathological excitement pattern of epilepsy, opening new possibilities for the diagnosis of neurological diseases. As the rapidly expanding neuroimaging technology becomes clinically and commercially available, non-invasive recording and display of brain activity patterns has become standard practice.

Single ion images of chemical species elevated in amyotrophic lateral sclerosis spinal cord. Fig.1 Single ion images of chemical species elevated in amyotrophic lateral sclerosis spinal cord. (Ganesana, 2017)

The Problem of Neuroscience Methods

Fig.2 Classification of neuroscience techniques based on different factors. (Cinel, 2019)

The rapid development of human neuroscience and technology has provided unprecedented possibilities for obtaining, collecting, sharing, and manipulating human brain information. The current research aims to optimize the long-term stability and biocompatibility of neuroscience technology so that it can be used for daily practical purposes outside of clinical trials. The practical application of these technologies depends not only on their effectiveness in detecting interpretable neural activity and/or stimulating specific target areas of the brain, but also on many other relevant factors, including the degree of invasiveness, portability or price, these factors affect its availability to human diseases in daily life. In addition, these "deep brain stimulation" (DBS) may change the brains and functions of humans or experimental animals, and even subjective consciousness, causing various serious ethical and even anthropological problems.

Future Development

New advances in neuroscience have paved the way for cognitive enhancement and human innovative applications in various environments. In the medium and long term, with the gradual elimination of ethical, medical, and technological barriers, there will be major improvements in existing technologies for recording and stimulating brain activity, and non-invasive technologies will remain the core technology. The following are several emerging neurotechnologies:

Creative Biolabs has excellent technology and reliable products in the field of neuroscience and can provide you with professional program customization and assistance. We are committed to jointly promoting the progress of neurological disease research. Please feel free to contact us if you are interested or have any questions.

References

  1. Ganesana, M.; et al. Analytical techniques in neuroscience: recent advances in imaging, separation, and electrochemical methods. Analytical chemistry. 2017, 89(1): 314-341.
  2. Cinel, C.; et al. Neurotechnologies for human cognitive augmentation: current state of the art and future prospects. Frontiers in human neuroscience. 2019, 13: 13.

For Research Use Only. Not For Clinical Use.
Send Inquiry Send Inquiry
Inquiry Basket
compare

Go to compare