Other Neuroscience Methods
Techniques of neuroscience are a hot area of contemporary medical research, and it is also full of controversies. The purpose of neurotechnology is to use tools and instruments to directly connect to the nervous system to realize the transmission of human brain information to visual machines. These tools include electrodes, optical capture, or computers, which are designed to record signals from the brain and "transform" them into technical control commands or manipulate brain activity by applying electrical or optical stimulation.
Uses of Neuroscience Technology
The monitoring and interference of brain activity based on different neurotechnologies can be used as an important means for the diagnosis and treatment of brain diseases. For example, nerve electrodes are in the form of electrode caps, which non-invasively pick up the electric field generated by the active brain for communication in the computer activities of patients with amyotrophic lateral sclerosis (ALS). Besides, implantable neurotechnology, such as high-resolution grid electrodes, can be placed directly on the surface of the brain to locate the pathological excitement pattern of epilepsy, opening new possibilities for the diagnosis of neurological diseases. As the rapidly expanding neuroimaging technology becomes clinically and commercially available, non-invasive recording and display of brain activity patterns has become standard practice.
The Problem of Neuroscience Methods
The rapid development of human neuroscience and technology has provided unprecedented possibilities for obtaining, collecting, sharing, and manipulating human brain information. The current research aims to optimize the long-term stability and biocompatibility of neuroscience technology so that it can be used for daily practical purposes outside of clinical trials. The practical application of these technologies depends not only on their effectiveness in detecting interpretable neural activity and/or stimulating specific target areas of the brain, but also on many other relevant factors, including the degree of invasiveness, portability or price, these factors affect its availability to human diseases in daily life. In addition, these "deep brain stimulation" (DBS) may change the brains and functions of humans or experimental animals, and even subjective consciousness, causing various serious ethical and even anthropological problems.
Future Development
New advances in neuroscience have paved the way for cognitive enhancement and human innovative applications in various environments. In the medium and long term, with the gradual elimination of ethical, medical, and technological barriers, there will be major improvements in existing technologies for recording and stimulating brain activity, and non-invasive technologies will remain the core technology. The following are several emerging neurotechnologies:
Creative Biolabs has excellent technology and reliable products in the field of neuroscience and can provide you with professional program customization and assistance. We are committed to jointly promoting the progress of neurological disease research. Please feel free to contact us if you are interested or have any questions.
- iNeuMab™ Anti-TNFα BBB Shuttle Antibody (NRZP-1022-ZP4105) (Cat#: NRZP-1022-ZP4105)
- iNeuMab™ Anti-Amyloid Beta 1-15 Antibody (NRP-0422-P867) (Cat#: NRP-0422-P867)
- iNeuMab™ Anti-Alpha Synuclein BBB Shuttle Antibody (NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- iNeuMab™ Anti-TREM2 BBB Shuttle Antibody (NRZP-1022-ZP4114) (Cat#: NRZP-1022-ZP4114)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P1686) (Cat#: NRP-0422-P1686)
- iNeuMab™ Anti-F-Spondin/SPON1 Antibody, Clone 3F4 (Cat#: NRZP-0822-ZP4740)
- iNeuMab™ Anti-EPHB2 Antibody (NRP-0422-P1220) (Cat#: NRP-0422-P1220)
- iNeuMab™ Anti-FGFR1 Antibody (NRP-0422-P1244) (Cat#: NRP-0422-P1244)
- iNeuMab™ Rabbit Anti-LRRK2 Monoclonal Antibody (CBP1887) (Cat#: NAB-08-PZ735)
- iNeuMab™ Mouse Anti-SHANK3 Monoclonal Antibody (CBP929) (Cat#: NAB-0720-Z3477)
- Rat Muller Cell (Cat#: NCL2110P040)
- Human Microglia Cell Line HMC3, Immortalized (Cat#: NCL-2108P38)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Human Dental Pulp Stem Cells (Cat#: NRZP-1122-ZP113)
- Mouse Glioma Cell Line GL-261-Luc (Cat#: NCL-2108P06)
- Mouse Midbrain Dopaminergic Neuron Cell MN9D (Cat#: NCL2110P059)
- Human Blood Brain Barrier Model (Cat#: NCL-2103-P187)
- Human Retinal Epithelial Cell ARPE-19 (Cat#: NCL2110P069)
- iNeu™ Human Motor Neurons (Cat#: NCL-2103-P71)
- Rat Schwann Cells RSC96, Immortalized (Cat#: NCL-2108P21)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- Mouse Parkinson disease (autosomal recessive, early onset) 7 (Park7) (NM_020569) clone, Untagged (Cat#: NEP-0621-R0133)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Human apolipoprotein E (APOE) (NM_000041) ORF clone, Untagged (Cat#: NEP-0421-R0232)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP509)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-SGSH BBB Shuttle Protein (Cat#: NRZP-0423-ZP505)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)