Single Cell Studies in Neuroscience
Single Cell Studies
The cell is the basic unit of structure and function of organisms, and cell-based studies are conducive to reveal the chemical essence and laws of life science. The past life science research usually focuses on a large number of cells of the limitations of the tiny cell volume and the sensitivity of the research techniques. However, there are significant microheterogeneity and differences between different individuals of the same cell type or different cells of the same individual. Therefore, the experimental results based on large numbers of cells can’t fully reflect the essence of life activities at the single-cell level.
In recent years, the rapid development of the analysis techniques, such as cell isolation, microfluidic, single-cell sequencing, greatly promoted the advancement of life science research at the single-cell level, namely single-cell analysis. Studying and analyzing the proteomes, gene expressions, and metabolisms of a single cell can not only characterize the cell heterogeneity but also better elucidate the molecular mechanisms of the physiological and pathological pathways. Currently, the single-cell study has already made huge contributions to the fields of stem cells, neuroscience, immunology, even clinical diagnosis, etc.
Single Cell Studies in Neuroscience
As the major part of the mammalian nervous system, the brain is an extremely complex organ playing essential roles in the regulation of both physiological activities and higher cognitive functions. Diverse and numerous neurons interconnect with each other forming a sophisticated network, which is the key to the nervous system in information transmission and processing. Therefore, single cell studies in multiple dimensions on these heterogeneous neurons, especially single cell omics analysis in recent, playing an increasingly important role in neuroscience research.
- Single Cell Electroporation
- Single Cell Genomic DNA Analysis
- Single Cell Transcriptome Analysis
Single-cell electroporation is a useful technique that allows the transportation of macromolecules, such as DNA, RNA, dyes, and peptides, into and out of a single cell under the external electric field. It has been widely applied for a variety of research fields, particularly gene therapy and neuroscience research.
Single-cell genomic DNA analysis, a kind of single-cell genomics, is analyzing the genomic DNA from an individual cell by next-generation sequencing technologies. In neuroscience, single-cell genomic DNA analysis can be utilized for the identification of different types or subtypes of neurons, examination of gene mutations, characterization of neural cell differences.
Single-cell transcriptome analysis, also known as single-cell transcriptomics, is another type of single-cell sequencing that amplifies and analyzes the whole transcriptome or mRNA by next-generation sequencing technologies. It has greatly contributed to study the cellular composition, pathophysiological pathways, and difference analysis of neurological disorders and cancers.
Creative Biolabs provides both off-the-shelf products and custom one-stop solutions for basic neuroscience research and preclinical applications. Please feel free to contact us for detailed information.
- iNeuMab™ Anti-Alpha Synuclein BBB Shuttle Antibody (NRZP-1022-ZP4050) (Cat#: NRZP-1022-ZP4050)
- Mouse Anti-SCN5A Monoclonal Antibody (CBP708) (Cat#: NAB-0720-Z2720)
- iNeuMab™ Anti-FGFR1 Antibody (NRP-0422-P1244) (Cat#: NRP-0422-P1244)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P1760) (Cat#: NRP-0422-P1760)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P2275) (Cat#: NRP-0422-P2275)
- iNeuMab™ Anti-ApoC3 BBB Shuttle Antibody (NRZP-1022-ZP3505) (Cat#: NRZP-1022-ZP3505)
- iNeuMab™ Mouse Anti-EFNB2 Monoclonal Antibody (CBP1159) (Cat#: NAB-0720-Z4396)
- iNeuMab™ Anti-TREM2 BBB Shuttle Antibody (NRZP-1022-ZP4114) (Cat#: NRZP-1022-ZP4114)
- iNeuMab™ Anti-Integrin αvβ8 BBB Shuttle Antibody (NRZP-1222-ZP1218) (Cat#: NRZP-1222-ZP1218)
- iNeuMab™ Anti-Tau Antibody (NRP-0422-P2293) (Cat#: NRP-0422-P2293)
- Mouse Glioma Cell Line GL-261-Luc (Cat#: NCL-2108P06)
- Human Glial (Oligodendrocytic) Hybrid Cell Line (MO3.13) (Cat#: NCL-2108P34)
- Human Brain Microvascular Endothelial Cells (Cat#: NCL-2103-P133)
- Human Astrocytes (Cat#: NCC20-9PZ01)
- Mouse Glioma Cell Line GL261-GFP (Cat#: NCL-2108P04)
- Immortalized Human Cerebral Microvascular Endothelial Cells (Cat#: NCL-2108-P020)
- iNeu™ Human Oligodendrocyte Progenitor Cells (OPCs) (Cat#: NCL-2103-P49)
- Rat Muller Cell (Cat#: NCL2110P040)
- Mouse Microglia Cell Line BV-2, Immortalized (Cat#: NCL2110P153)
- Human Dental Pulp Stem Cells (Cat#: NRZP-1122-ZP113)
- Human Tau Aggregation Kit (Cat#: NRP-0322-P2173)
- Amyloid beta 1-42 Kit (Cat#: NRP-0322-P2170)
- Human Poly ADP ribose polymerase,PARP Assay Kit (Cat#: NRZP-1122-ZP62)
- Alpha-Synuclein Aggregation Assay Kit (Cat#: NRZP-1122-ZP37)
- Alpha Synuclein Aggregation Kit (Cat#: NRZP-1122-ZP15)
- Human GFAP ELISA Kit [Colorimetric] (Cat#: NPP2011ZP383)
- Beta Amyloid (1-42), Aggregation Kit (Cat#: NRZP-0323-ZP200)
- Beta Amyloid (1-40), Aggregation Kit (Cat#: NRZP-0323-ZP199)
- VSV-eGFP (Cat#: NTA-2011-ZP20)
- AAV2 Full Capsids, Reference Standards (Cat#: NTC2101070CR)
- Dextran, NHS Activated (Cat#: NRZP-0722-ZP124)
- ABCA1 Antisense Oligonucleotide (NV-2106-P27) (Cat#: NV-2106-P27)
- Human huntingtin-associated protein 1 (HAP1) transcript variant 2 (NM_177977) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0676)
- Rat Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2) (NM_020093) ORF clone/lentiviral particle, Myc-DDK Tagged (Cat#: NEP-0621-R0041)
- Human huntingtin (HTT) (NM_002111) ORF clone, Myc-DDK Tagged (Cat#: NEP-0521-R0497)
- Lenti of Human TAR DNA binding protein (TARDBP) (NM_007375) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0832)
- Lenti of Mouse synuclein, alpha (Snca) transcript variant (NM_001042451) ORF clone, mGFP Tagged (Cat#: NEP-0521-R0864)
- Tau Antisense Oligonucleotide (IONIS-MAPTRx) (Cat#: NV-2106-P29)
- App Rat amyloid beta (A4) precursor protein (App)(NM_019288) ORF clone, Untagged (Cat#: NEP-0421-R0053)
- Human superoxide dismutase 3, extracellular (SOD3) (NM_003102) ORF clone, Untagged (Cat#: NEP-0521-R0808)
- Mouse SOD1 shRNA Silencing Adenovirus (Cat#: NV-2106-P14)
- NeuroBiologics™ Pig Cerebrospinal Fluid (Cat#: NRZP-0822-ZP498)
- NeuroBiologics™ Rat Cerebrospinal Fluid (Cat#: NRZP-0822-ZP496)
- NeuroBiologics™ Human Cerebrospinal Fluid (Cat#: NRZP-0822-ZP491)
- NeuroBiologics™ Mouse Cerebrospinal Fluid (Cat#: NRZP-0822-ZP497)
- NeuroBiologics™ Monkey Cerebrospinal Fluid (Cat#: NRZP-0822-ZP495)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP510)
- NeuroPro™ Anti-GDNF BBB Shuttle Protein (Cat#: NRZP-0423-ZP500)
- NeuroPro™ Anti-TNFR BBB Shuttle Protein (Cat#: NRZP-0423-ZP501)
- NeuroPro™ Anti-ASA BBB Shuttle Protein (Cat#: NRZP-0423-ZP504)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP498)
- NeuroPro™ Anti-EPO BBB Shuttle Protein (Cat#: NRZP-0423-ZP508)
- NeuroPro™ Anti-idursulfase BBB Shuttle Protein (Cat#: NRZP-0423-ZP497)
- NeuroPro™ Anti-IDUA BBB Shuttle Protein (Cat#: NRZP-0423-ZP502)
- NeuroPro™ Anti-IDS BBB Shuttle Protein (Cat#: NRZP-0423-ZP503)
- NeuroPro™ Anti-Erythropoietin BBB Shuttle Protein (Cat#: NRZP-0423-ZP499)